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Analytically parametrized solutions for robust quantum control using smooth pulses
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Achieving high-fidelity control of quantum systems is essential for realization of a practical quantum
computer. Composite pulse sequences which suppress different types of errors can be nested to suppress a
wide variety of errors but the result is often not optimal, especially in the presence of constraints such as
bandwidth limitations. Robust smooth pulse shaping provides flexibility but obtaining such analytical pulse
shapes is a nontrivial problem and choosing the appropriate parameters typically requires a numerical search in a
high-dimensional space. In this work, we extend a previous analytical treatment of robust smooth pulses to allow
the determination of pulse parameters without numerical search. We also show that the problem can be reduced
to a set of coupled ordinary differential equations which allows for a more streamlined numerical treatment.
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I. INTRODUCTION

The main difficulty hampering the efforts to build a large-
scale, practical quantum computer is decoherence. Quantum
error correction codes provide a promising path toward fault-
tolerant quantum computers. However, a typical surface code
requires access to quantum gates with a fidelity above 99%,
and significantly higher fidelities are desirable to reduce over-
head. Achieving high gate fidelities in a noisy device requires
carefully designed robust control fields.

There are a variety of ways to raise fidelities, and quantum
control methods have been developed to pursue a number
of desirable objectives such as time-optimal pulse sequences
[1] (and the references therein), leakage suppression [2], or
smooth pulse shaping in the absence of noise [3]. Our work
here, though, lies strictly within the subset of quantum control
methods that seek to suppress stochastic logical errors by
pulse shaping.

Robust composite pulse sequences [4], which generalize
Hahn echo [5] and Carr-Purcell-Meiboom-Gill (CPMG) [6,7]
sequences to implement nontrivial unitaries, are effective for
suppressing slow noise or calibration errors which remain
constant during the gate time. Various pulse sequences have
been developed to suppress either pulse length errors or off-
resonance errors [4]. However, in some systems, such as spin
qubits in silicon [8–12] or GaAs [13,14], noise is present in
some combination of the two forms, which requires nesting
these sequences [15] or using specialized pulses [16–18].
Such methods are often designed with square pulses in mind,
although they can be modified to use smooth ramping profiles
[17,19]. However, the finite bandwidth of a physical control
field may be more naturally accommodated by robust smooth
pulses [20–23]. These smooth pulses have an analytical form,
but with free parameters that must be chosen to produce the
desired unitary while satisfying robustness constraints, and
this usually requires a numerical search in parameter space.

*utkan@umbc.edu

In this paper, based on the approach of Ref. [21], we derive
a completely analytical family of robust smooth pulses which
eliminates the requirement of numerical parameter fitting. We
also cast the problem of finding a robust smooth pulse which
implements a particular unitary into a set of coupled ordinary
differential equations (ODEs), which can be solved by using
standard numerical solvers. We provide explicit examples of
robust pulse shapes along with their filter functions.

Although our focus here will be on a two-level system,
the physical context is not necessarily limited to one-qubit
problems. Indeed, these solutions can be used to implement
robust gates in SU(2) ⊂ SU(4) or SU(2) × SU(2) ⊂ SU(4)
subgroups, targeting local rotations or nonlocal controlled-
phase gates in a silicon double quantum dot setup [19] or in
superconducting qubits with fixed coupling [24].

The structure of this paper is as follows. In Sec. II, we
present a brief summary of the analytical formalism of Barnes
et al. [21] on which this work is built. In Sec. III, we show how
to choose symmetric auxilliary functions and their parameters
without resorting to a numerical search, and we present the
resulting pulse shapes and filter functions. In Sec. IV, we show
how to efficiently generate robust pulse shapes by introducing
auxilliary ODEs and incorporating the desired rotation angles
and robustness constraints as local boundary conditions rather
than nonlocal integral relations. We then conclude in Sec. V.

II. BACKGROUND

We first review robust smooth pulses for a two-level sys-
tem, adapted from Ref. [21] to our use cases. We consider the
Hamiltonian

H̃ (t ) = �0(t )σz + β̃σx, (1)

where �0(t ) represents the driving field and β̃ = β + δβ is
the energy splitting with non-Markovian fluctuations δβ.

This Hamiltonian appears in various systems including
solid-state spin qubits, and thus our results have a wide
applicability. For the sake of having specific numbers and
constraints for the Hamiltonian and noise levels, however,
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we remark that our main interest is spin qubits in a double
quantum dot setup in the (1,1) charge configuration, for which
the exchange coupling J between the electrons remains fixed
and one of the electrons is driven by a microwave source
whose amplitude is given by �mw. This mapping requires that
the Zeeman splittings of the electrons are sufficiently different
from each other such that it is possible to address one of
the electrons without affecting the other, as is the case in the
experiments of Refs. [9–11]. Under these conditions, the noisy
Hamiltonian for the spin pair can be expressed as

H̃ (t ) = �mw(t )

2
IX + J̃

4
ZZ, (2)

where �mw(t ) is proportional to the amplitude of the mi-
crowave drive, J̃ = J + δJ and δJ denotes the noise in the
exchange coupling due to electrostatic fluctuations [19]. This
Hamiltonian is in an su(2) subalgebra of su(4) generated by
{IX, ZZ, ZY }, and thus the results we obtain below for the
Hamiltonian in Eq. (1) can be applicable to these devices.

We now summarize the formalism from Ref. [21] for find-
ing robust pulse shapes to fix quasistatic stochastic errors in
β while targeting a specific rotation at the final time t f . In the
absence of noise, the time evolution operator U (t f ; 0) at t = t f

can be parametrized in terms of an auxiliary function �(χ )
[where χ = χ (t ) is a reparametrization of time], expressed
via the ZXZ Euler angle decomposition in the following way
[21]:

U (t f ) = Zξ+(χ f )−ξ−(χ f )X2χ f Z−[ξ+(χ f )+ξ−(χ f )], (3)

where χ f = χ (t f ), and Xγ (Zγ ) denotes a rotation around the
x− (z−) axis of the Bloch sphere by angle γ . ξ±, which
determine the Euler angles, are related to the parametrizing
function �(χ ) through

ξ±(χ f ) = �(χ f )

∓ sgn[�′(χ f )] 1
2 arcsec(

√
1+ [�′(χ f ) sin(2χ f )]2).

(4)

The control field �0(t ) is related to �(χ ) through

�0(t ) = �(χ )

= −β sin(2χ )

× �′′(χ ) + 4�′(χ ) cot(2χ ) + [�′(χ )]3 sin(4χ )

2
√

1 + [�′(χ ) sin(2χ )]2
3 ,

(5)

and χ is a reparametrization of time, determined by �(χ ) [21]
as follows:

βt = h̄
∫ χ

0
dχ̄

√
1 + [�′(χ̄ ) sin(2χ̄ )]2. (6)

We note that the initial condition U (0) = 1 implies �(0) =
�′(0) = 0.

The main point of the above is that the problem of finding
a pulse shape, which will result in a target rotation U (t f ) =
Utarget at time t = t f in the absence of noise can be reduced
to choosing a function �(χ ) which only needs to obey cer-
tain local boundary conditions (rather than nonlocal integral
conditions as in Refs. [22,25,26]), and the choice of �(χ ) in

turn determines the pulse shape �0(t ) that needs to be applied
during this time interval to make this happen.

Now, to ensure that this time evolution is also robust
against quasistatic stochastic noise in β, which is our goal in
this work as well, �(χ ) should further satisfy the following
additional conditions [21]:

εχ (χ f ) ≡ sin2(2χ f )e2i�(χ f )

+ 4 tan(2χ f )
∫ χ f

0
dχ sin2(2χ )e2i�(χ ) = 0, (7)

εξ (χ f ) ≡
∫ χ f

0
dχ sin2(2χ )�′(χ ) = 0. (8)

These relations follow from the series expansion of noisy
time evolution operator in powers of noise terms. The real
and imaginary parts of the left-hand side of Eq. (7) are
proportional to the coefficients for the leading-order noise
terms for δβχ (t f ) and δβχ̇ (t f ), respectively, the left-hand side
of Eq. (8) gives the coefficient for δβξ (t f ) [21], and they need
to vanish at the final time χ = χ f such that the gate is robust.

The second of these robustness conditions is automatically
satisfied for any driving pulse that is antisymmetric (odd)
in time: When �(χ ) is an even function, Eq. (8) is odd in
χ f [which itself is an odd function of t which follows from
Eq. (6)], so for any choice of �(χ ) on the interval [0, χ f ], or
correspondingly, �0(t ) on [0, t f ], one can construct a rotation
robust against δβξ (t f ) by extending the evolution to the sym-
metric interval [−t f , t f ] with �0(t ) at negative times defined
by enforcing antisymmetry �0(−t ) = −�0(t ). One can find
the resulting overall time evolution U (t f ; −t f ) as follows.
From Eq. (1) and the Schrödinger equation iU̇ (t ) = H (t )U (t ),
we see that a similarity transformation by σz combined with a
time inversion of a time evolution with H (t ) from t = 0 to t f

is equivalent to a time evolution by H ′(t ) = −�0(t ) + β from
t = 0 to t = t f . Thus, the time evolution for the first half with
“inverted” pulse can be written in terms of the time evolution
for the second half U (t f ; 0) as σzUf (t f ; 0)†σz, which leads to

U (t f ; −t f ) = U (t f ; 0)[σzU (t f ; 0)†σz], (9)

and finally, by using Eqs. (3) and (4), we obtain

U (t f ; −t f ) = Zξ+(χ f )−ξ−(χ f )X4χ f Z−[ξ+(χ f )−ξ−(χ f )], (10)

which is a rotation on the Bloch sphere given by an angle θ =
4χ f around an axis cos(φ)x̂ + sin(φ)ŷ where [21]

cos φ = 1√
1 + [�′(χ f ) sin(2χ f )]2

. (11)

When the bandwidth on the control field �0(t ) is limited such
that it cannot be turned on or off quickly (when compared to
the timescale t f ), one can furthermore require that �0(t f ) also
vanishes, which can be viewed as a constraint on �′′(χ f ) [21]
via Eq. (5).

The first of the robustness conditions, the complex-valued
Eq. (7), however, cannot be as trivially satisfied. When tar-
geting an arbitrary rotation, it is possible to find solutions by
starting with an ansatz for the auxilliary function �(χ, a) with
sufficient degrees of freedom encapsulated as a, and use a
numerical search to find ai which would satisfy the robustness
conditions while at the same time producing the desired
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rotation [21]. For the special case of χ f = nπ/4, analytical
solutions were given in Ref. [21]. In the next section, we show
how to satisfy Eq. (7) analytically for an arbitrary unitary.

III. ANALYTICAL SOLUTIONS TO
THE ROBUSTNESS CONDITIONS

Within this section, we assume that Eq. (8) will be satisfied
by doubling the interval to [−χ f , χ f ] and using symmetry as
discussed above. Thus, we only need to focus on satisfying
Eq. (7). This will ensure that the strength of the leading-order
noise term in the time-evolution operator vanishes at the final
time, which is parametrized as χ f .

Now we will replace the auxiliary function �(χ ) with two
new auxiliary functions (as one can already surmise, the two
new functions will not be independent of each other), R(χ )
and α(χ ), defined via

R(χ )ei[2�(χ )−α(χ )] ≡
∫ χ

0
dχ̄ sin2(2χ̄ )e2i�(χ̄ ). (12)

Differentiating both sides of Eq. (12) with respect to χ one
can obtain

eiα(χ ) sin2(2χ ) = R′(χ ) + iR(χ )[2�′(χ ) − α′(χ )], (13)

and so, for a given α(χ ), solving the real and imaginary parts
of Eq. (13) gives the relations

R(χ ) =
∫ χ

0
dχ̄ cos[α(χ̄ )] sin2(2χ̄ ),

�′(χ ) = 1

2

{
α′(χ ) + sin[α(χ )] sin2(2χ )

R(χ )

}
. (14)

The first relation indicates that R(χ ) and α(χ ) are not inde-
pendent; either one can be used to parametrize the time evo-
lution operator. The second relation tells us how to translate a
pulse specified in the R(χ )/α(χ ) parametrization back to the
original parametrization in Ref. [21] in terms of �(χ ).

At this point, we have reparametrized the solution of the
Schrödinger equation in terms of a function α(χ ) [or equiv-
alently R(χ )] instead of �(χ ) and showed how it would be
related to �(χ ) of the original parametrization. The advantage
of this reparametrization is that the robustness conditions
simplify into local boundary conditions for α(χ ) and R(χ )
as opposed to nonlocal robustness conditions on �(χ ), as we
will show shortly.

Furthermore, the problem is analytically solvable when
α(χ ) is chosen in such a way that cos α(χ ) sin2(2χ ) is in-
tegrable. A better alternative, however, is to consider R(χ ) as
the independent variable, which in turn defines α(χ ) through
its derivative.

Before going into the robustness conditions, though, we
note that the condition �(0) = 0 [from the initial condition
U (0) = 1] simply corresponds to a vanishing integration con-
stant in Eq. (14). However, the condition �′(0) = 0 [also
from U (0) = 1] requires special care: Since the denominator
vanishes in the limit χ → 0 [and possibly at other points,
depending on the choice for α(χ )], we impose sin[α(χ )] = 0
at these points to avoid any singularities. This is a stronger
condition than requiring that the strength of the control pulse
|�(χ )| remains finite, but leads to a simpler set of constraints.

Finally, we can relate the robustness condition, Eq. (7), to
boundary conditions on α(χ ) and R(χ ) by noting that

[R(χ )ei[2�(χ )−α(χ )]]′

+ 4 tan(2χ )[R(χ )ei[2�(χ )−α(χ )]] = εχ (χ ). (15)

Plugging Eq. (14) into the left-hand side and separating real
and imaginary parts yields

Re[eiα(χ )−2i�(χ )εχ (χ )]

= 4R(χ ) tan(2χ ) + cos[α(χ )] sin2(2χ ),

Im[eiα(χ )−2i�(χ )εχ (χ )] = sin[α(χ )] sin2(2χ ). (16)

So, for a generic value χ f (recalling that it is one of the Euler
angles of the final rotation and hence should not be restricted),
the robustness condition εχ (χ f ) = 0 reduces these relations to

α(χ f ) = nπ, R(χ f ) = (−1)n

8
sin(4χ f ), (17)

where n is any integer.
At this point, besides these boundary conditions, we re-

mark that if we treat R(χ ) as the fundamental parametrizing
function of the problem, it still cannot be chosen arbitrarily
during the intermediate times χ ∈ (0, χ f ), because Eq. (14)
implies that its derivative must be a function within [−1, 1]
at all times. Also, ensuring that �′(χ ) remains finite requires
special care; a straightforward way to achieve this is to require
that

|R(χ )| > 0, ∀χ ∈ (0, χ f ],

|R′(χ )| < 1, ∀χ ∈ (0, χ f ). (18)

Furthermore, the robustness condition Eq. (17) for α(χ )
translates into a boundary condition on R′(χ )/ sin2(2χ ).

The relation between the phase, α(χ ), and the ampli-
tude R(χ ) can be slightly simplified by introducing yet one
more parametrization of time u(χ ) ≡ 4χ − sin(4χ ) and de-
fine β[u(χ )] ≡ α(χ ), such that R(u) = ∫ u

0 du cos β(u). Using
u ≡ u(χ ) instead of χ as the “independent” parameter is not
essential and working with R(χ ) is equally possible and will
be used in Sec. IV when finding solutions numerically, but we
find it convenient when looking for analytical solutions.

Under this reparameterization, �′(χ ) simplifies to

�′(χ ) = u′(χ )

2

[
− R′′(u)√

1 − R′(u)2
+

√
1 − R′(u)2

R(u)

]
(19)

and the problem of finding a robust unitary reduces to pick-
ing a function R(u) which satisfies the following ordinary
relations:

R′(u = u f ) = ±1, R(u = u f ) = ∓ sin(4χ f ) (20)

for robustness, and

R′(u = 0) = ±1, R′(u) ∈ [−1, 1], R′′(u = 0, u f ) = 0,

(21)

by construction, and finally Eq. (11), or equivalently

tan2 φ = lim
χ→χ f

−16 sin6(2χ )sgn[R′(u)]R′′′(u), (22)
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for targeting the unitary

U (θ, φ) = e−i θ
2 (cos φσx+sin φσy ) (23)

at the final time, where θ = 4χ f . The first set of boundary
conditions above, for R′(u = 0) and R′′(u = 0, u f ), are re-
quired to ensure �′(χ → 0) (hence the driving field) remains
finite, since the denominator R(u) in Eq. (19) vanishes, and
the remaining two follow from the robustness requirement.

Finally, �(χ ) is an odd function when R(u) is also odd,
which ensures that the second robustness condition, Eq. (8), is
satisfied when pulsing in a symmetric time interval.

In summary, for a given θ and φ, any choice of function
R(χ ) whose derivative is bounded in the interval [−1, 1] and
which obeys the boundary conditions given in Eqs. (20)–(22)
and Eq. (18) will yield a pulse shape �(χ ) via Eqs. (5)
and (19), which results in the robust quantum gate U (θ, φ)
[cf. Eq. (23)] implemented using the Hamiltonian H (t ) [cf.
Eq. (1)]. Different choices for R(χ ) will yield different pulse
shapes but the resulting robust gate will be the same.

A. Examples

As an example, consider the following even function:

R′(u) = a0 + a1 cos

(
2πu

u f

)
+ a2 cos

(
4πu

u f

)
, (24)

which is trivially integrable, and R(u f ) is simply given by
a0u f since oscillatory functions integrate to zero at the final
time. By letting a0 = − sin(4χ f )/u f and a2 = 1 − a0 − a1,
we meet all the robustness conditions in Eq. (20).

We can target, say, a θ = 4χ f = 2π − π/2 rotation around
the axis given by φ = π/9 using Eq. (22), which corresponds
to the choice a1 ≈ 0.3244. From Eq. (6), we find the total gate
time is t f ≈ 9.84h̄/β. The resulting pulse shape is shown in
Fig. 1. Similarly, for θ = 2π − 3π/8, φ = π/4, we find a1 ≈
0.4767 and obtain t f ≈ 6.38h̄/β (Fig. 2).

When using this ansatz, targeting other unitaries may re-
quire additional 2π windings in θ . The minimum number
of additional windings required for targeting an arbitrary
unitary U (θ, φ) is shown in Fig. 3. Overall, these pulses
require a bandwidth of ∼100β/h̄ when targeting fidelities
above 99.99%. For example, a typically accessible bandwidth
of 40 MHz [12] limits β/h to 0.4 MHz, which implies
an exchange coupling of J/h = 1.6 MHz, and a maximum
microwave amplitude of max[�mw(t )/h] ≈ 16 MHz for the
pulse given in Fig. 2, which is attainable in the experiments
[10,27]. The resulting gate time t f ≈ 2.54 μs is less than
T ∗

2 ∼ 10 μs [9], and orders of magnitude less than T2, which
is the relevant timescale for dynamical error correction.

It is possible to impose additional constraints, such as
�0(t f ) = 0 to soften the tail, using this form of ansatz,
although this requires adding higher harmonics with free
coefficients of the form am cos(2mπu/u f ).

We conclude this section by remarking that finding an
ansatz function R(χ ) with sufficient number of tunable pa-
rameters ai and which meets the conditions Eqs. (18)–(20)
is not easy to come by. For example, the ansatz Eq. (24)
requires careful tuning of ai to ensure that R′(u) ∈ (−1, 1)
for all u ∈ (0, u f ) is satisfied and that the denominators in
Eq. (19) remain nonzero; the white regions in Fig. 3 contain

2 4 6 8 10

−5

5

10

15

0.2 0.4 0.6 0.8 1.0 1.2 1.4
−5

5

10

15

Naive

DCG

0.5 1 5 10 50 100

0.001
(b)

(a)

0.010

0.100

1

10

FIG. 1. (a) Pulse shape �0(t ) [inset �(χ )] in units of β which
implements a robust θ = 2π − π/2 rotation around the axis n =
(cos φ, sin φ, 0) with φ = π/9. (b) Comparison of the leading-order
filter functions for the robust gate against a naive implementation
using Unaive(t ).

the parameter regions which fail this check. These continu-
ous conditions can in principle be satisfied by construction
with better choice of ansatz. For example, the simple choice
for the even function R′(u) = cos2 (

∑N
i=0 aiu2i ) with N � 3

does satisfy these continuous constraints from the outset, but
unfortunately, it is not possible to analytically integrate this
function to find R(u) for N > 2. A numerical approach is still
viable, however, which we will demonstrate in Sec. IV.

B. Filter function

The smooth pulse is designed to cancel quasistatic noise,
i.e., noise that is constant during the gate duration t ∈
[−t f , t f ]. In practice, the noise strength may also drift during
the pulse. For instance, in the context of the double quantum
dot setup in Ref. [19], �0(t ) corresponds to the microwave
driving amplitude and β error corresponds to exchange error
induced by charge noise, which typically has a 1/ f power
spectral density (PSD) in the relevant region of the noise spec-
trum. When the noise is sufficiently weak such that the error
Hamiltonian Hε (t ) satisfies || ∫ t f

t0
dtHε (t )|| � 1, the average

susceptibility of a quantum gate to time-dependent noise can
be characterized in a perturbative manner. In this approach,
the leading-order error in noise-averaged fidelity is given by

〈F〉 ≈ 1 − 1

h̄2

3∑
i, j=1

∫ ∞

−∞

dω

2π
Si j (ω)

Fi j (ω)

ω2
, (25)
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FIG. 2. (a) Pulse shape �0(t ) [inset �(χ )] in units of β which
implements a robust θ = 2π − 3π/8 rotation around the axis n =
(cos φ, sin φ, 0) with φ = π/4. (b) Comparison of the leading-order
filter functions for the robust gate against a naive implementation
using Unaive(t ).

where S(ω) and F (ω) respectively characterize the noise and
control and are related to the error and control Hamiltonians
[Hε (t ) = δβ(t )σx and Hc = �0(t )σz + βσx in our case] as
follows. The filter function, F (ω), is given by

F (ω) = [R(ω)R†(ω)]T , (26)

where Rik (ω) ≡ −iω
∫ t f

t0
dtRik (t )eiωt and R(t ) = Ad(U (t ; t0))

= tr[σiU (t ; t0)σ jU †(t ; t0)]/2 is the adjoint representation of
the time-evolution operator [19,28]. Si j (ω) is the power spec-
tral density given by Fourier transforming the correlation
between the coefficients of σi and σ j terms in the noise Hamil-
tonian Hε (t ). In our particular case, only Sxx(ω) is nonzero
and is given by the Fourier transform of the autocorrelation
function Cβ (t ) = 〈δβ(t )δβ(0)〉.

We have numerically evaluated the filter functions corre-
sponding to the gates obtained by the control pulses given in
Figs. 1 and 2 in a symmetric time interval from −t f to t f . We
compare their filter function to that of a naive pulse

Unaive(t ) = exp

[
−iθ

t + t f

2t f
(cos φσx + sin φσy)

]
, (27)

which also implements the same unitary in the same amount
of time. The results are shown in Figs. 1 and 2. The robust
gates suppress the low-frequency noise much better than the

FIG. 3. Accessible unitaries U (θ + 2πn, φ) when using the
ansatz from Eq. (24). The minimum number of additional windings
to target the unitary, n, is color coded, up to n = 10. White regions
either require n > 10 or cannot be implement with this ansatz, either
because it leads to solutions for which R(u) vanishes for some
u > 0 which implies a divergent �′(χ ) or because R′(u) exceeds
the interval [−1, 1] for some u ∈ (0, uf ).

corresponding naive gates, although they are more susceptible
to noise at frequencies on the order of inverse gate time, ω ∼
1/t f . Thus, the dynamically corrected gates (DCGs) tend to
lead to higher fidelities when the noise power is concentrated
at frequencies lower than ω ∼ 1/t f , which is the case for these
devices [29–31].

IV. ROBUST PULSE SHAPES AS SOLUTIONS
OF COUPLED ODE SYSTEMS

In this section, we show that the problem of finding robust
pulse shapes can be converted into a set of coupled ODEs.
This allows finding more general solutions, which are even
not restricted to antisymmetric pulse shapes in principle, by
using standard ODE solvers in a straightforward manner. This
method still avoids any search over parameters and yields
solutions very quickly.

We first make a change of variables to ensure that denomi-
nator in Eq. (19) never vanishes for χ > 0. A straightforward
way of achieving this would be to ensure that the integrand of
the denominator is always positive (or negative), which can be
achieved by defining yet another function which is bounded,
γ (χ ), such that

A tanh[γ (χ )] ≡ α(χ ), π/2 � A > 0. (28)

In terms of γ (χ ), the robustness conditions then become

γ (0) = 0, γ (χ f ) = tanh−1[α(χ f )/A], γ ′(0) = 0,

(29)
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FIG. 4. (a) Pulse shape �0(t ) [inset �(χ )] in units of β

which implements a robust θ = 9π/5 rotation around the axis n =
(cos φ, sin φ, 0) with φ = π/5. (b) Comparison of the leading-order
filter functions for the robust gate against a naive implementation
using Unaive(t ).

and we can solve for the second condition in Eq. (17) by
considering a differential equation

G′(χ ) = cos{A tanh[γ (χ )]} sin2(2χ ), (30)

subject to boundary condition

G(χ f ) = − 1
8 cos[α(χ f )] sin(4χ f ). (31)

This function must also satisfy

G(0) = 0 (32)

since R(0) = 0.
The rotation axis defined by the angle φ can be imposed

via a boundary condition on α(χ f ), using Eqs. (11), (14), and
(17), which gives

α′(χ f ) = 2 tan(φ)/ sin(2χ f ). (33)

We can also impose the condition that the pulse �(χ )
should vanish at the end [�(χ f ) = 0] by imposing a boundary
condition on α′′(χ f ), using Eq. (5):

�′′(χ f ) = − 4�′(χ f ) cot(2χ f ) − [�′(χ f )]3 sin(4χ f ).

(34)

Since �′(χ f ) = α′(χ f )/2 and �′′(χ f ) = [α′′(χ f ) −
4α′(χ f ) tan(2χ f )]/2, this can be seen as the defining
condition on α′′(χ f ).

These two boundary conditions on the first and second
derivatives of α(χ f ) can readily written as corresponding
boundary conditions on the derivatives of γ (χ ), as

γ ′(χ f ) = α′(χ f )

A
(

1 − α2(χ f )
A2

) ,

γ ′′(χ f ) = 2
α(χ f )α′(χ f )2

A3
(

1 − α2(χ f )
A2

)2 + α′′(χ f )

A
(

1 − α2(χ f )
A2

) . (35)

As an example, we solve for the robust pulse implementing
a U (θ = 9π/5, φ = −π/5) using the auxiliary equation

c∂3
t γ (t ) + ∂6

t γ (t ) = 0 (36)

with the choices c = 300, A = π/2, and n = 0. The pulse
shape and the corresponding filter function are shown in
Fig. 4. Compared to the analytical pulse shapes based on the
ansatz Eq. (24), we note that this particular auxiliary differ-
ential equation leads to numerical solutions which are sharper
and take longer time to perform. However, the advantage of
the numerical solutions are that they are more flexible in terms
of ansatz and allow targeting arbitrary unitaries.

V. CONCLUSION

We have shown that it is possible to obtain robust quantum
gates using smooth pulses in a completely analytical fashion,
which only requires finding a function whose derivative is
bounded and satisfies certain local boundary conditions, at
initial and final times. This eliminates nonlocal conditions
which necessitate a numerical search over auxiliary param-
eters [21,22]. Furthermore, we have shown that the problem
can also be converted to a set of coupled ODEs, which further
eliminates the search for such a bounded function and yields
solutions very quickly using standard numerical ODE solvers.
Although the presented pulse shapes tend to have narrow
peaks, this is due to the simple choices of ansatz and not a
fundamental limitation of our approach.

Although our work assumes an su(2) algebra, we again
emphasize that our results can be applicable to two-qubit
scenarios which exhibit that structure. For instance, in 28Si
quantum double dots [19] or superconducting qubits [24]
with an always-on coupling, the Hamiltonian decouples into
two su(2) problems, and when the qubits can be addressed
separately, each su(2) subspace can be controlled separately.
Our robust smooth pulses can then be used to suppress ex-
change noise and eliminate crosstalk while targeting a desired
two-qubit unitary.
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