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We define and study parafermion stabilizer codes, which can be viewed as generalizations of Kitaev’s one-
dimensional (1D) model of unpaired Majorana fermions. Parafermion stabilizer codes can protect against low-
weight errors acting on a small subset of parafermion modes in analogy to qudit stabilizer codes. Examples of
several smallest parafermion stabilizer codes are given. A locality-preserving embedding of qudit operators into
parafermion operators is established that allows one to map known qudit stabilizer codes to parafermion codes.
We also present a local 2D parafermion construction that combines topological protection of Kitaev’s toric code
with additional protection relying on parity conservation.
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I. INTRODUCTION

Topologically protected systems are potentially useful for
realizations of fault-tolerant elements in a quantum com-
puter [1,2]. The zero-temperature stability of such systems
leads to exponential suppression of decoherence induced by
local environmental perturbations. On the other hand, the
manipulation of the degenerate ground state can be achieved
by braiding operations with non-Abelian anyons [3,4].

The Kitaev chain provides an enlightening example of how
interactions can result in non-Abelian quasiparticles [5]. Net-
works of one-dimensional realizations of such quasiparticles
can be employed for realizations of quantum gates via braiding
operations [6,7]. However, only a nonuniversal set of quantum
gates can be realized with Majorana zero modes. A generaliza-
tion of the Kitaev chain model has been proposed recently in
which quasiparticles obey parafermion ZD algebra as opposed
to Z2 algebra for Majorana zero modes [8]. Many recent
publications address possible realizations of parafermion zero
modes [9–29]. The braiding properties of parafermion systems
have some advantages over the Majorana modes, while still
remaining nonuniversal [10,11,16]. However, parafermion
systems can be used for obtaining quasiparticles that permit
universal quantum computations [19].

The presence of finite temperature introduces inevitable
errors and in principle requires continuous error correc-
tion [30]. “Self-correcting” quantum memories are stable
at finite temperatures [31,32]; however, they cannot be
realized in two dimensions with local interactions [33,34].
Parafermion stabilizer codes considered here can protect
against low-weight fermionic errors, i.e., errors that act on
a small subset of parafermion modes. The measurement
and manipulation schemes required for code implementa-
tions have been formulated for Majorana zero modes [35–
37] and should in principle generalize to parafermion zero
modes [11].

In this paper, we address the possibility of active error
correction in systems containing a set of parafermion modes as
opposed to typical systems containing qubits or qudits. Earlier
works on quantum error correction usually addressed the qubit
case with a Hilbert space dimension D = 2 [30,38–40]. Error
correction on qudits with D > 2 has also been considered,
and qudit stabilizer codes have been introduced [41–47]. The
formalism is usually applied to situations in which D is

prime or a prime power [42,48,49], while generalizations to
composite D are also possible [50].

Parafermion codes can also be interpreted in terms of
termwise commuting Hamiltonians of interacting parafermion
zero modes, thus generalizing Kitaev’s one-dimensional (1D)
model of unpaired Majorana fermions to the D > 2 case
and to arbitrary interactions preserving the commutativity
of terms in the Hamiltonian. Of particular interest are the
Hamiltonians corresponding to geometrically local interac-
tions on a d-dimensional lattice. Thus, one can ask similar
questions to those posed in Ref. [51] in relation to Majorana
codes, i.e., what is the role of superselection rules in the
finite-temperature stability of topological order defined by
interacting parafermion modes. Such superselection rules are
characteristic of fermionic systems when only interactions
with bosonic environments are present. On the other hand, the
superselection rule prohibiting parity-violating error operators
is not likely to always hold, for instance, when the environment
supports gapless fermionic modes that can couple to the
system [52,53]. Parafermion stabilizer codes can help in such
situations by providing protection associated with the code
distance of parity-violating logical operators.

The paper is organized as follows. In Sec. II, we intro-
duce notations and provide background on the theory of
qudit stabilizer codes. Here we also discuss the Jordan-
Wigner transformation, which leads us to the introduction
of parafermion operators. In Sec. III, we give a formal
definition of parafermion stabilizer codes and establish their
basic properties. We also discuss the commutativity condition
on stabilizer generators, define the code distance, and prove
basic results on the dimension of the code space. In Sec. IV, we
present several examples of the smallest parafermion stabilizer
codes. In Sec. V, we construct mappings between qudit sta-
bilizer codes and parafermion stabilizer codes. By employing
such mappings, we are able to construct parafermion toric
code with an adjustable degree of protection against the
parity-violating errors. Finally, we give our conclusions in
Sec. VI.

II. BACKGROUND

A. Qudits

Qudits are D-dimensional generalizations of qubits, and
are generally implemented using D-level physical systems.
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One of the well-known generating sets for qudit operations is
constructed by the generators of the finite discrete Weyl group
WD that obey the defining relations [54,55]

XD = ZD = 1, ZX = ωXZ. (1)

This group is sometimes referred to as the discrete Heisenberg
group [42], and the generators are sometimes referred to
as generalized Pauli matrices [50]. By diagonalizing one
of these operators, say Z, one obtains the D-dimensional
representation

X =
D−1∑
j=0

|j + 1〉 〈j | , Z =
D−1∑
j=0

ωj |j 〉 〈j | , (2)

where ω = e2πi/D and the addition j + 1 is in mod D. Above
and throughout the paper, 1 denotes the identity operator with
proper dimensions. Products of X and Z span the Lie algebra
su(D), hence their linear combinations can generate universal
SU(D) operations. Operations on multiple qudits are tensor
products of the single-qudit operators, hence operators acting
on distinct qudits commute. We will denote an X operator
acting on the j th site as Xj , which is equivalent to an X

operator at the j th slot of the tensor product padded with
identity operators: Xj = 1 ⊗ · · · ⊗ X ⊗ · · · ⊗ 1 (and similar
for Zj ).

B. Stabilizer codes for qudits

Stabilizer codes are an important class of quantum error-
correcting codes [30,56], which, under appropriate mapping,
can be also thought of as additive classical codes [57].
Stabilizer codes utilize a set of commuting operators, called
the stabilizer group, for defining the code space. In this section,
we review the stabilizer formalism for qudits (see, e.g., [50]).
Let S be a maximal Abelian subgroup of W⊗n

D that does
not contain ωj1 (j ∈ ZD and j �= 0) and CS be the code
subspace of the Hilbert space stabilized by all the elements of
S, i.e., Si |ψ〉 = |ψ〉∀ Si ∈ S and |ψ〉 ∈ CS , then S is called
the stabilizer group and it is generally denoted by its generating
set S = 〈S1,S2, . . . ,Sk〉.

Since the stabilizer group S is an Abelian group, its
elements must commute with each other by definition. The
commutativity condition of its generators depends upon the
particular case of W⊗n

D at hand. Two arbitrary elements
of W⊗n

D , G = ωλXuZv and G′ = ωλ′
Xu′

Zv′
, where Xu =

X
u1
1 X

u2
2 · · · Xun

n , Zv = Z
v1
1 Z

v2
2 · · · Zvn

n (and similarly for G′),
will commute iff

u · v′ = v · u′ mod D (3)

is satisfied [50].
The support of a Weyl operator w ∈ W⊗n

D , denoted as
Supp(w), is defined as the set of qudits on which it acts
nontrivially. The cardinality of the support, |Supp(w)|, is called
the weight of the operator w, also denoted as |w|. The set of
all Weyl operators in W⊗n

D that commute with all the elements
of S is called the centralizer of S and is denoted as C(S).

For prime D, a stabilizer group with n − k independent
generators implies that the corresponding centralizer is gen-
erated by n + k generators. The logical operators {X̄,Z̄} of a
stabilizer code S are the elements of C(S) that are not in S.

The robustness of a quantum code can be measured by how
far two encoded states are apart, which is quantified through
the notion of distance. The weight of the logical operators
implies the separation of the encoded states. Therefore, the
distance of a stabilizer code is defined as

d = min
Li∈C(S)\S

|Li |. (4)

The longer the code distance is, the better protection the code
provides. A code of distance d can detect any error of weight up
to d − 1, and correct up to 	d/2
. A quantum error-correcting
code that encodes n physical qudits into k logical qudits with
distance d is denoted as [[n,k,d]]D .

C. Parafermion operators

Parafermion operators can be obtained by the Jordan-
Wigner transformation of the D-state spin operators
{Xj,Zj } ∈ W⊗n

D as

γ2j−1 =
(

j−1∏
k=1

Xk

)
Zj ,

γ2j = ω(d−1)/2

(
j−1∏
k=1

Xk

)
ZjXj , (5)

which is a mapping of n local spin operators into 2n

nonlocal parafermion operators, therefore the total number
of parafermion modes is always even. Parafermion operators
γj obey the following relations:

γ d
j = 1, γjγk = ωγkγj (j < k, ω = ei2π/D). (6)

A special case with D = 2 gives us the anticommuting self-
adjoint Majorana fermions.

Realizations of parafermion zero modes corresponding to
Eq. (6) have been suggested. In such realizations, the localized
state is described by a parafermion operator that commutes
with the corresponding Hamiltonian and changes the parity of
ZD charge by 1 [8]. They are non-Abelian anyons and can
be used for realizations of fault-tolerant topological quantum
gates.

There are recent proposals to construct solid-state systems
that accommodate parafermion zero modes. Realizations
employing exotic fractional quantum Hall (FQH) states and
quantum nanowires have been proposed [9–21].

III. PARAFERMION STABILIZER CODES

A. The group PF(D,2n)

We shall call the group generated by the single-mode
operators γj given in Eq. (6) the parafermion group PF(D,2n).
Arbitrary elements of PF(D,2n) can be written as ωλγ α , where
λ ∈ ZD and

γ α = γ
α1
1 · · · γ α2n

2n (7)

with α = (α1, . . . ,α2n) ∈ Z2n
D , and by convention the terms are

arranged in increasing order in their indices. The ordered set of
nonzero elements in α is called the support of γ α , or Supp(γ α).
We define the weight of γ α as the number of nonzero entries
in α, denoted as |Supp(γ α)| or simply |γ α|.
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A parafermion operator ωλγ α ∈ PF(D,2n) will preserve
parity iff

2n∑
i=1

αi = 0 mod D. (8)

One can generalize Eq. (6) to obtain γ m
i γ n

j = ωmnγ n
j γ m

i

for i < j . Using this, it can be shown that two parafermion
operators γ α and γ β commute iff

α�βT = 0 mod D (9)

is satisfied, where � is a 2n × 2n antisymmetric matrix �ij =
sgn(j − i) or explicitly

� =

⎛
⎜⎜⎜⎜⎝

0 1 1 · · · 1
−1 0 1 · · · 1
−1 −1 0 · · · 1

...
...

...
...

−1 −1 −1 · · · 0

⎞
⎟⎟⎟⎟⎠. (10)

In particular, when the index of the last nonzero entry in α

is smaller than the index of the first nonzero entry in β, the
commutativity condition Eq. (9) is reduced to⎛

⎝∑
j

αj

⎞
⎠

⎛
⎝∑

j

βj

⎞
⎠ = 0 mod D. (11)

The parity-conservation condition for a parafermion oper-
ator can also be expressed in terms of the ZD charge operator

Q =
n∏

j=1

γ
†
2j−1γ2j . (12)

For any γ α ⊂ PF(D,2n),

γ αQ = ωpQγ α, p =
2n∑
i=1

αi mod D, (13)

where p is the ZD charge of γ α , thus the parity-conservation
condition can also be written as [γ α,Q] = 0.

Since Majorana zero modes correspond to the D = 2 case,
evidently we have PF(2,2n) ∼= Maj(2n).

B. Stabilizer groups in PF(D,2n)

It is not generally possible to map parafermion operators in
PF(D,2n) onto qudit operators in W⊗k

D due to the nonlocality
of parafermion operators. The tensor product structure of k-
qudit operators in W⊗k

D guarantees that operators acting on
different sites commute, whereas parafermion operators fail to
commute for all distinct sites. Nevertheless, even though a one-
to-one mapping between a single-mode parafermion operator
and a qudit operator is impossible, it is indeed possible to map
multiple parafermion modes onto multiple qudits at once (see
Sec. IV B) or to map multiple parafermion modes onto a local
single-qudit in a consistent way (see Sec. V). Indeed, as we
observe in the next section, PF(D,2n) proves to be rich group
with many nontrivial Abelian subgroups.

Definition. Parafermion stabilizer codes CSPF , similar to
qudit stabilizer codes, are completely determined by their
corresponding stabilizer group, which in our case is SPF ⊆

PF(D,2n). We list the defining properties of parafermion
stabilizer codes as follows:

(i) Elements of SPF are parity-preserving operators.
(ii) SPF is an Abelian group not containing ωj1, where

j ∈ ZD and j �= 0.
Whether these conditions hold for a given parafermion

stabilizer code or not can be verified using Eqs. (8) and (9),
respectively.

The set of all parafermion operators in PF(D,2n) that
commute with all the elements of SPF is called the centralizer
of SPF and is denoted as C(SPF). The set of logical operators
L(SPF) encoding k qudits of a parafermion code SPF are the
elements of C(SPF) that are not in SPF, that is, L(SPF) =
C(SPF) \ SPF. When D is a prime number, the order of the
generating set (excluding the identity operator) of SPF is n − k

and the centralizer is generated by n + k generators.
When writing the generating sets explicitly, we will omit

the phase factors ωl (l ∈ ZD) for all generators for brevity
throughout the paper, however one should keep in mind that
such phase factors are in general required in order to satisfy the
second defining property of parafermion codes listed above.

The code space of a parafermion stabilizer code SPF is the
subspace that is invariant under the action of all the elements
of SPF. The distance d of a parafermion code is given by the
minimum weight of its logical operators,

d = min
γ α∈L(SPF)

|γ α|. (14)

We denote a parafermion stabilizer code that encodes 2n

parafermion modes into k logical qudits with distance d as
[[2n,k,d]]D . A parafermion stabilizer code of distance d can
detect any parafermion error of weight up to d − 1, and it can
correct up to 	d/2
 in analogy to qudit codes. However, it
should be noted that similar to Majorana fermion codes [51],
the robustness of parafermion codes is not solely determined
by the code distance d: when some of the logical operators
have nonzero parity, the conservation of parafermion parity
will offer additional protection, that is, a subspace of the
code space will be protected against such errors. Following
Ref. [51], we introduce an additional parameter lcon defined
as the minimum diameter of a region that can support a
parity-conserving logical operator:

lcon = min
γ α ∈ L(SPF)∑

i αi = 0 mod D

diam[Supp(γ α)], (15)

which can be used in order to measure the degree of protection
relying on the superselection rules.

What can be said about the order of SPF? Below, we adapt
the theorem and proof given by Gheorghiu [50] to parafermion
stabilizer codes.

Theorem. Let SPF be a parafermion stabilizer code in
PF(D,2n), where D is allowed to be composite, let |SPF|
denote the order of SPF, and let |CSPF | be the dimension of
code space. Then the following equation holds:

|CSPF ||SPF| = Dn. (16)

Proof. The operator

P = 1

|SPF|
|SPF|∑
j=1

Sj (17)
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is a projection operator satisfying P 2 = P = P †. Clearly, for
any |ψj 〉 ∈ CSPF , P |ψj 〉 = |ψj 〉 holds. Thus the subspace W
that P projects onto includes CSPF , or CSPF ⊆ W .

Next we show that this relation holds the other way around.
Let |φ〉 be an arbitrary element of W (thus P |φ〉 = |φ〉) and
Sk be an arbitrary element of SPF. Since SkP = P for all k, we
obtain Sk(P |φ〉) = P |φ〉, meaning all |φ〉 ∈ W is stabilized
by SPF or W ⊆ CSPF , leading us to the conclusion that W =
CSPF . The dimension of the code space is then given as tr(P ).
Since SPF is an Abelian group and the trace condition tr(γ α) =
0 when γ α �= 1 and tr(1) = Dn for γ α,1 ∈ PF(D,2n), holds,
we arrive at the result

tr(P ) = |CSPF | = 1

|SPF|D
n. (18)

Corollary. When D is a prime power pl , |CSPF | = plk and
|SPF| = pr with r = l(n − k) (we refer the reader to [42] for
a detailed derivation).

In later sections, we will also use a matrix form of the
stabilizer code SPF = 〈S1, . . . ,Sl〉 = 〈γ α1 , . . . ,γ αl 〉, whose
rows are given by αi , that is,

SPF =

⎛
⎜⎝

α1
...
αl

⎞
⎟⎠. (19)

The same construction is also extended for the logical
operators, yielding the matrix LPF. Since SPF is an Abelian
group, due to Eq. (9), we have SPF�ST

PF = 0 mod D. The
logical operator matrix LPF, on the other hand, obeys the
relations LPF�ST

PF = 0 and LPF�LT
PF �= 0 in mod D.

IV. EXAMPLES OF PARAFERMION STABILIZER CODES

A. Three-state quantum clock model

We present a simple example of a parafermion code starting
from a three-state quantum clock model Hamiltonian (for h =
0):

H3 = −J

n−1∑
j=1

(Z†
jZj+1 + Z

†
j+1Zj ). (20)

By employing the Jordan-Wigner transformation, this Hamil-
tonian can be rewritten in terms of parafermion operators in
the following form:

H = iJ

n−1∑
j=1

(γ †
2j γ2j+1 − γ

†
2j+1γ2j ), (21)

which is known as the Fendley [8] generalization of the Kitaev
chain model. For D = 2, Eq. (20) reduces to the familiar Ising
model with h = 0.

We form the corresponding stabilizer group taking individ-
ual terms of the Hamiltonian for each value of j as

〈iγ †
2 γ3, − iγ

†
3 γ2, . . . ,iγ

†
2n−2γ2n−1, − iγ

†
2n−1γ2n−2〉. (22)

Logical operators of the code can be chosen as Z̄ = γ1 and
X̄ = γ2n. Then the distance of the code is d = 1. But these
logical operators are not parity-preserving, we can combine
them as γ

†
1 γ2n and γ1γ

†
2n to obtain parity-preserving logical

operators. Even though this code does not provide protection
against parity-violating errors, in the absence of such errors
the code protection can be described by the diameter of even
logical operators, i.e., lcon = 2n.

B. Minimal parafermion stabilizer codes

Quantum error-correcting schemes come at the expense of
introducing additional qudits in order to protect information
encoded into quantum states. The ratio of the number of
encoded qudits k (whose state can be restored after deco-
herence) to the number of underlying physical qudits n is
called encoding rate r = k/n. The relative distance is defined
as δ = d/n. Codes with higher encoding rate r and relative
distance are preferable, and it is known that both δ and r can
be finite for a particular code family [58]. In this section, we
discuss the minimal stabilizer codes encoding the k = 1 qudit
and try to find codes with the best encoding rate r for the
minimal nontrivial distance d = 3 for prime D.

Using an exhaustive search, we find that for D = 3 the
smallest nontrivial code requires eight parafermion modes and
results in an [[8,1,3]]3 parafermion stabilizer code:

SPF =〈γ †
1 γ2γ

†
4 γ6,γ

†
2 γ3γ

†
5 γ7,γ

†
3 γ4γ

†
6 γ8〉,

L(SPF) =〈γ †
1 γ2γ3γ7,γ

†
2 γ

†
3 γ6〉. (23)

The logical operators generate W3, encoding eight
parafermion modes into a single logical qutrit.

Realizations of D = 6 parafermion zero modes have
been proposed recently [11], making this case particularly
interesting. Because D = 6 is not a prime or prime power,
the original construction for qudit stabilizer codes [42] is not
directly applicable. We will instead “double” the D = 3 code
given above by squaring all the generators. However, this is
a mapping onto a larger space and we need to take care of
the additional operators that commute with the new stabilizer
generators. The full set of generators for D = 6 thus becomes

SPF = 〈
γ 3

1 γ 3
2 ,γ 3

3 γ 3
4 ,γ 3

5 γ 3
6 ,γ 3

7 γ 3
8

(γ †
1 γ2γ

†
4 γ6)2,(γ †

2 γ3γ
†
5 γ7)2,(γ †

3 γ4γ
†
6 γ8)2

〉
,

L(SPF) = 〈(γ †
1 γ2γ3γ7)2,(γ †

2 γ
†
3 γ6)2〉. (24)

Since these logical operators behave like X2 and Z2 for D = 6
qudits, the code above essentially encodes a qutrit using 2n =
8 parafermion zero modes. We also note that this code may
not have the best encoding rate for D = 6.

However, the minimal number of modes depends on D. For
the case of D = 7, there exists a [[6,1,3]]7 code that requires
only six modes,

SPF = 〈
γ1γ2γ

5
5 ,γ1γ

5
4 γ6

〉
,

(25)
L(SPF) = 〈

γ 3
1 γ 6

2 γ6,γ
2
1 γ 5

2 γ3
〉
.

This indicates that there is a minimal D for which the encoding
rate is optimal [59].
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V. MAPPINGS BETWEEN QUDITS AND PARAFERMION
MODES

A. Mappings to and from parafermion codes

There is an established literature on stabilizer codes for
qudits when D is prime or a prime power [60,61]. Recently,
some properties of qudit stabilizer codes for the nonprime
case have been discussed in [50]. An isomorphism between
multi-qudit and multi-parafermion mode operators will let us
construct parafermion stabilizer codes based on qudit codes.
In this section, we establish such an isomorphism by mapping
four parafermion modes to a single qudit.

Remark. Let X̃j and Z̃j (j = 1, . . . ,k) denote the generat-
ing operators of W⊗k

D embedded into PF(D,2n), encoding k

qudits into 2n parafermion modes. Such an embedding has the
following properties:

(i) Logical qudit operators {X̃j ,Z̃j } obey Eq. (1), that is,
they generate the embedded Weyl group W⊗k

D ⊆ PF(D,2n).
(ii) Logical qudit operators for different sites commute

([X̃i,X̃j ] = [Z̃i,Z̃j ] = [X̃i,Z̃j ] = 0 when i �= j ).
(iii) The embedding ofW⊗k

D into the larger group PF(D,2n)
may require additional parafermion operators {Q̃(i)

j } that
commute with the original qudit stabilizer group S or its
corresponding logical operators L(SPF). Such operators must
be included in the parafermion stabilizer group SPF and hence
must preserve parity [an example is given in Eq. (26) below].

In turns out that the minimum number of parafermion
modes required for such an embedding is four, that is, four
parafermion modes will map to a single qudit. This mapping
leads to the following lemma.

Lemma. Every [[n,k,d]]D stabilizer code can be mapped
onto a [[4n,k,2d]]D parafermion stabilizer code, encoding four
parafermion modes into a single qudit.

Proof. Let us define the operators

Z̃j+1 = γ
†
1+4j γ2+4j , X̃j+1 = γ

†
1+4j γ3+4j ,

(26)
Q̃j+1 = γ

†
1+4j γ2+4j γ

†
3+4j γ4+4j .

It is straightforward to show that 〈X̃j ,Z̃j 〉 generate the
embedded Weyl group W⊗k

D ⊆ PF(D,2n) (that is, Z̃iX̃j =
ωX̃j Z̃iδij and X̃D

j = Z̃D
j = 1) and are parity-preserving. We

can treat L(SPF) = 〈X̃j ,Z̃j 〉 as the logical operators of a
stabilizer group SPF = 〈Q̃j 〉. This makes the purpose of the
additional fourth mode (which does not appear in the logical
operators) clear: without it, the stabilizer group would include
a non-parity-preserving operator. Finally, since every Weyl
operator is mapped to a parafermion operator with two modes,
the distance of the new code is 2d.

This mapping allows us to construct families of parafermion
stabilizer codes from known families of qudit stabilizer codes.
In particular, one can map the qudit toric codes [60] (and their
generalizations [62,63]) to the corresponding parafermion
code. The advantage of this mapping is that a local stabilizer
generator in a d-dimensional lattice will map to a local
parafermion operator. The disadvantage is that all logical
operators preserve parity, thus there is no additional protec-
tion associated with the presence of parity-violating logical
operators.

It turns out that we can do a similar mapping in the opposite
direction, albeit without preserving the locality of stabilizer
generators.

Lemma. Any parafermion stabilizer code with parame-
ters [[2n,k,d]]D and stabilizer group SPF can generate a
[[2n,2k,d ′]]D qudit CSS code.

Proof. Consider the check matrix

SCSS =
(

SPF� 0
0 SPF

)
. (27)

For a parafermion code, k = n − rank(SPF), whereas for the
CSS code, k′ = 2n − 2 × rank(SPF) = 2k (� is a full-rank
matrix). Hence SCSS is the check matrix of a [[2n,2k,d ′]]D
CSS code. The corresponding logical operator matrices LPF

and LPF� behave like X- and Z-type logical qudit operators.
We note that this construction is a proper generalization

of the doubling lemma described in [51], which maps a
Majorana fermion code to a weakly self-dual CSS code.
Unfortunately, for D > 2 this mapping becomes nonlocal,
i.e., a local qudit operator will generally map to a nonlocal
parafermion operator.

B. Parafermion toric code with parity-violating
logical operators

In this section, we construct a parafermion analog of
Kitaev’s toric code [1] for qudits [60]. The toric code is a
stabilizer code defined on an a × b lattice on the surface of
a torus. A portion of the lattice is depicted in Fig. 1, where
each dot represents a single qudit (hence, there are 2ab qudits
overall).

Let D = p2l , where p is a prime number and l ∈ Z+. The
operators

Z̃j+1 = γ
pl−1
1+4j γ2+4j , X̃j+1 = γ

pl−1
1+4j γ3+4j ,

(28)
Q̃j+1 = γ

†
1+4j γ

†
2+4j γ3+4j γ4+4j

define a mapping of four parafermion modes onto a single
qudit via the one-qudit stabilizer group SPF = 〈Q̃j 〉 and its
corresponding logical operators L(SPF) = 〈X̃j ,Z̃j 〉.

As

Bp
X̃−1

X̃ = γpl−1
1+4jγ3+4j

X̃−1

X̃

Z̃
Z̃ = γpl−1

1+4jγ2+4j
Z̃−1

Z̃−1

As

Bp

FIG. 1. (Color online) A portion of the lattice place on a torus,
where each dot represents four parafermion modes (the index j � 0
uniquely denotes the lattice point). On the right, parafermion star and
plaquette operators As and Bp are given in detail [pl is a prime power;
further details are given in Eq. (28)].
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GÜNGÖRDÜ, NEPAL, AND KOVALEV PHYSICAL REVIEW A 90, 042326 (2014)

Z1X2

Z2

X1

FIG. 2. (Color online) Loops corresponding to the logical opera-
tors of the toric code.

Consider the operators defined on a star-shaped and
plaquette-shaped portion of the lattice:

As =
∏

j∈star(s)

X̃
aj

j , Bp =
∏

j∈plaquette(p)

Z̃
bj

j , (29)

where aj and bj are ±1, specified on the right side of Fig. 1.
In general, As and Bp either do not overlap or overlap at
two sites. One can easily verify that the construction given in
Eq. (29) ensures that the commutator [As,Bp] vanishes in both
cases. We also note that both As and Bp are parity-conserving
operators. The set of all As and Bp forms a stabilizer group.

Due to the fact that the lattice is defined on the surface of a
torus, the lattice is periodic in both dimensions, leading to the
result ∏

s

As = 1,
∏
p

Bp = 1. (30)

This implies |S| = 2(ab − 1), and using Eq. (16), we find that
k = 2. The logical operators Xl ,Zl (l = 1,2) are horizontal
and vertical loops along the lattice, as given in Fig. 2. Since
these loops go all the way through the torus, they commute
with the stabilizer generators As and Bp at all sites.

We note that the parity (charge) associated with operators
is pl �= 0 mod D [64]. Hence, the parity of the horizontal
(vertical) logical operators of the parafermion toric code is
a × pl (b × pl) mod D. By tuning a and b, we can ensure
that one of the logical operators will violate parity (that is, pl

divides a but does not divide b). The choice of the smallest b

would correspond to the absence of parity-violating errors. In
general, b can be tuned depending on the probability of parity-
violating errors. Therefore, this code construction combines

topological protection of Kitaev’s toric code with additional
protection relying on suppression of parity-violating errors.

VI. CONCLUSION

We have introduced stabilizer codes in which parafermion
zero modes represent the constructing blocks as opposed to
qudit stabilizer codes. Our work generalizes earlier construc-
tions based on Majorana zero modes [51]. While it is possible
in general to start with a stabilizer code for qudits and use it
with parafermion zero modes through the mapping given in
Eq. (26), which utilizes the embedding W⊗n

D ⊂ PF(D,4n),
we find that there are more efficient codes in PF(D,2n)
requiring fewer parafermion modes, as we have exemplified
in Sec. IV B. These results also show that the parafermions
can achieve a better encoding rate than Majorana fermions.
We have also shown that by using a similar embedding
with a qudit toric code, it is possible to construct a code
protecting parafermion modes against parity-violating errors
where the degree of protection (i.e., distance) can be adjusted.
A similar construction has been introduced for color codes
using Majorana zero modes [51].

Parafermion stabilizer codes can be used for construct-
ing Hamiltonians in which commuting terms correspond to
stabilizer generators. Parafermion stabilizer codes thus lead
to a multitude of models generalizing Kitaev’s 1D chain of
unpaired Majorana zero modes to higher dimensions (D > 2)
and to arbitrary interactions defined by the choice of stabilizer
generators. An important question arising here is related
to finite-temperature stability of topological order in such
systems. In general, a 2D lattice with local interactions cannot
lead to stable topological order at finite temperature. Thus,
it could be plausible to assume that by requiring some of
the logical operators to be parity-violating operators, one
can add additional protection to topological order where this
additional protection relies on superselection rules. Whether
such constructions can lead to the absence of parity-conserving
stringlike logical operators (e.g., stringlike logical operators
are absent in Haah’s code [65]) is an open problem.
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[44] M. Grassl, T. Beth, and M. Rötteler, Int. J. Quantum Inf. 02, 55

(2004).

[45] S. Y. Looi, L. Yu, V. Gheorghiu, and R. B. Griffiths, Phys. Rev.
A 78, 042303 (2008).

[46] D. Hu, W. Tang, M. Zhao, Q. Chen, S. Yu, and C. H. Oh, Phys.
Rev. A 78, 012306 (2008).

[47] V. Gheorghiu, S. Y. Looi, and R. B. Griffiths, Phys. Rev. A 81,
032326 (2010).

[48] A. Ketkar, A. Klappenecker, S. Kumar, and P. Sarvepalli, IEEE
Trans. Inf. Theor. 52, 4892 (2006).

[49] X. Chen, B. Zeng, and I. L. Chuang, Phys. Rev. A 78, 062315
(2008).

[50] V. Gheorghiu, Phys. Lett. A 378, 505 (2014).
[51] S. Bravyi, B. M. Terhal, and B. Leemhuis, New J. Phys. 12,

083039 (2010).
[52] D. Rainis and D. Loss, Phys. Rev. B 85, 174533

(2012).
[53] F. J. Burnell, A. Shnirman, and Y. Oreg, Phys. Rev. B 88, 224507

(2013).
[54] H. Weyl, The Theory of Groups and Quantum Mechanics

(Dover, New York, 1950).
[55] J. Schwinger and B.-G. Englert, Quantum Mechanics: Symbol-

ism of Atomic Measurements (Springer-Verlag, Berlin, 2001).
[56] D. Gottesman, Phys. Rev. A 54, 1862 (1996).
[57] A. R. Calderbank, E. M. Rains, P. W. Shor, and N. J. A. Sloane,

IEEE Trans. Inf. Theor. 44, 1369 (1998).
[58] A. R. Calderbank and P. W. Shor, Phys. Rev. A 54, 1098

(1996).
[59] An exhaustive search takes exponential time in D, thus we were

unable to examine D > 7 cases and determine the optimal D.
A better algorithm may allow us to determine this value.

[60] O. Viyuela, A. Rivas, and M. A. Martin-Delgado, New J. Phys.
14, 033044 (2012).

[61] H. Anwar, E. T. Campbell, and D. E. Browne, New J. Phys. 14,
063006 (2012).

[62] J.-P. Tillich and G. Zemor, in IEEE International Symposium on
Information Theory (IEEE, Piscataway, NJ, 2009), pp. 799–803.

[63] A. A. Kovalev and L. P. Pryadko, Phys. Rev. A 88, 012311
(2013).

[64] The presence of parity-violating operators does not prevent
quantum computation. The Kitaev chain contains parity-
violating operators as well, nevertheless a topological qubit
can be defined by using four Majorana edge modes or a pair
of topological regions [66–68]. Storage and manipulation of
information take place in the code space corresponding to a
given parity sector of the Hilbert space.

[65] J. Haah, Phys. Rev. A 83, 042330 (2011).
[66] L. Fu and C. L. Kane, Phys. Rev. B 79, 161408 (2009).
[67] R. M. Lutchyn, J. D. Sau, and S. Das Sarma, Phys. Rev. Lett.

105, 077001 (2010).
[68] D. E. Drummond, A. A. Kovalev, C.-Y. Hou, K. Shtengel, and

L. P. Pryadko, Phys. Rev. B 90, 115404 (2014).

042326-7

http://dx.doi.org/10.1103/PhysRevB.87.045130
http://dx.doi.org/10.1103/PhysRevB.87.045130
http://dx.doi.org/10.1103/PhysRevB.87.045130
http://dx.doi.org/10.1103/PhysRevB.87.045130
http://dx.doi.org/10.1103/PhysRevB.88.235103
http://dx.doi.org/10.1103/PhysRevB.88.235103
http://dx.doi.org/10.1103/PhysRevB.88.235103
http://dx.doi.org/10.1103/PhysRevB.88.235103
http://dx.doi.org/10.1103/PhysRevB.87.165421
http://dx.doi.org/10.1103/PhysRevB.87.165421
http://dx.doi.org/10.1103/PhysRevB.87.165421
http://dx.doi.org/10.1103/PhysRevB.87.165421
http://dx.doi.org/10.1103/PhysRevB.89.115402
http://dx.doi.org/10.1103/PhysRevB.89.115402
http://dx.doi.org/10.1103/PhysRevB.89.115402
http://dx.doi.org/10.1103/PhysRevB.89.115402
http://dx.doi.org/10.1103/PhysRevB.87.195422
http://dx.doi.org/10.1103/PhysRevB.87.195422
http://dx.doi.org/10.1103/PhysRevB.87.195422
http://dx.doi.org/10.1103/PhysRevB.87.195422
http://dx.doi.org/10.1103/PhysRevX.4.011036
http://dx.doi.org/10.1103/PhysRevX.4.011036
http://dx.doi.org/10.1103/PhysRevX.4.011036
http://dx.doi.org/10.1103/PhysRevX.4.011036
http://dx.doi.org/10.1103/PhysRevLett.112.246403
http://dx.doi.org/10.1103/PhysRevLett.112.246403
http://dx.doi.org/10.1103/PhysRevLett.112.246403
http://dx.doi.org/10.1103/PhysRevLett.112.246403
http://dx.doi.org/10.1103/PhysRevLett.113.066401
http://dx.doi.org/10.1103/PhysRevLett.113.066401
http://dx.doi.org/10.1103/PhysRevLett.113.066401
http://dx.doi.org/10.1103/PhysRevLett.113.066401
http://dx.doi.org/10.1016/j.nuclphysb.2011.09.012
http://dx.doi.org/10.1016/j.nuclphysb.2011.09.012
http://dx.doi.org/10.1016/j.nuclphysb.2011.09.012
http://dx.doi.org/10.1016/j.nuclphysb.2011.09.012
http://dx.doi.org/10.1103/PhysRevB.77.064302
http://dx.doi.org/10.1103/PhysRevB.77.064302
http://dx.doi.org/10.1103/PhysRevB.77.064302
http://dx.doi.org/10.1103/PhysRevB.77.064302
http://dx.doi.org/10.1088/1367-2630/14/2/025005
http://dx.doi.org/10.1088/1367-2630/14/2/025005
http://dx.doi.org/10.1088/1367-2630/14/2/025005
http://dx.doi.org/10.1088/1367-2630/14/2/025005
http://dx.doi.org/10.1088/1751-8113/40/13/013
http://dx.doi.org/10.1088/1751-8113/40/13/013
http://dx.doi.org/10.1088/1751-8113/40/13/013
http://dx.doi.org/10.1088/1751-8113/40/13/013
http://dx.doi.org/10.1103/PhysRevX.4.031009
http://dx.doi.org/10.1103/PhysRevX.4.031009
http://dx.doi.org/10.1103/PhysRevX.4.031009
http://dx.doi.org/10.1103/PhysRevX.4.031009
http://dx.doi.org/10.1126/science.1253742
http://dx.doi.org/10.1126/science.1253742
http://dx.doi.org/10.1126/science.1253742
http://dx.doi.org/10.1126/science.1253742
http://dx.doi.org/10.1088/1742-5468/2013/10/P10024
http://dx.doi.org/10.1088/1742-5468/2013/10/P10024
http://dx.doi.org/10.1088/1742-5468/2013/10/P10024
http://dx.doi.org/10.1103/PhysRevB.88.085115
http://dx.doi.org/10.1103/PhysRevB.88.085115
http://dx.doi.org/10.1103/PhysRevB.88.085115
http://dx.doi.org/10.1103/PhysRevB.88.085115
http://dx.doi.org/10.1063/1.1499754
http://dx.doi.org/10.1063/1.1499754
http://dx.doi.org/10.1063/1.1499754
http://dx.doi.org/10.1063/1.1499754
http://dx.doi.org/10.1103/PhysRevA.73.012340
http://dx.doi.org/10.1103/PhysRevA.73.012340
http://dx.doi.org/10.1103/PhysRevA.73.012340
http://dx.doi.org/10.1103/PhysRevA.73.012340
http://dx.doi.org/10.1088/1367-2630/11/4/043029
http://dx.doi.org/10.1088/1367-2630/11/4/043029
http://dx.doi.org/10.1088/1367-2630/11/4/043029
http://dx.doi.org/10.1088/1367-2630/11/4/043029
http://dx.doi.org/10.1103/PhysRevLett.110.090502
http://dx.doi.org/10.1103/PhysRevLett.110.090502
http://dx.doi.org/10.1103/PhysRevLett.110.090502
http://dx.doi.org/10.1103/PhysRevLett.110.090502
http://dx.doi.org/10.1103/PhysRevA.82.052322
http://dx.doi.org/10.1103/PhysRevA.82.052322
http://dx.doi.org/10.1103/PhysRevA.82.052322
http://dx.doi.org/10.1103/PhysRevA.82.052322
http://dx.doi.org/10.1088/1367-2630/12/12/125002
http://dx.doi.org/10.1088/1367-2630/12/12/125002
http://dx.doi.org/10.1088/1367-2630/12/12/125002
http://dx.doi.org/10.1088/1367-2630/12/12/125002
http://dx.doi.org/10.1103/PhysRevLett.106.130504
http://dx.doi.org/10.1103/PhysRevLett.106.130504
http://dx.doi.org/10.1103/PhysRevLett.106.130504
http://dx.doi.org/10.1103/PhysRevLett.106.130504
http://dx.doi.org/10.1103/PhysRevA.52.R2493
http://dx.doi.org/10.1103/PhysRevA.52.R2493
http://dx.doi.org/10.1103/PhysRevA.52.R2493
http://dx.doi.org/10.1103/PhysRevA.52.R2493
http://dx.doi.org/10.1103/PhysRevA.55.900
http://dx.doi.org/10.1103/PhysRevA.55.900
http://dx.doi.org/10.1103/PhysRevA.55.900
http://dx.doi.org/10.1103/PhysRevA.55.900
http://dx.doi.org/10.1103/PhysRevLett.77.793
http://dx.doi.org/10.1103/PhysRevLett.77.793
http://dx.doi.org/10.1103/PhysRevLett.77.793
http://dx.doi.org/10.1103/PhysRevLett.77.793
http://dx.doi.org/10.1109/18.782103
http://dx.doi.org/10.1109/18.782103
http://dx.doi.org/10.1109/18.782103
http://dx.doi.org/10.1109/18.782103
http://dx.doi.org/10.1109/18.959288
http://dx.doi.org/10.1109/18.959288
http://dx.doi.org/10.1109/18.959288
http://dx.doi.org/10.1109/18.959288
http://dx.doi.org/10.1103/PhysRevA.65.012308
http://dx.doi.org/10.1103/PhysRevA.65.012308
http://dx.doi.org/10.1103/PhysRevA.65.012308
http://dx.doi.org/10.1103/PhysRevA.65.012308
http://dx.doi.org/10.1142/S0219749904000079
http://dx.doi.org/10.1142/S0219749904000079
http://dx.doi.org/10.1142/S0219749904000079
http://dx.doi.org/10.1142/S0219749904000079
http://dx.doi.org/10.1103/PhysRevA.78.042303
http://dx.doi.org/10.1103/PhysRevA.78.042303
http://dx.doi.org/10.1103/PhysRevA.78.042303
http://dx.doi.org/10.1103/PhysRevA.78.042303
http://dx.doi.org/10.1103/PhysRevA.78.012306
http://dx.doi.org/10.1103/PhysRevA.78.012306
http://dx.doi.org/10.1103/PhysRevA.78.012306
http://dx.doi.org/10.1103/PhysRevA.78.012306
http://dx.doi.org/10.1103/PhysRevA.81.032326
http://dx.doi.org/10.1103/PhysRevA.81.032326
http://dx.doi.org/10.1103/PhysRevA.81.032326
http://dx.doi.org/10.1103/PhysRevA.81.032326
http://dx.doi.org/10.1109/TIT.2006.883612
http://dx.doi.org/10.1109/TIT.2006.883612
http://dx.doi.org/10.1109/TIT.2006.883612
http://dx.doi.org/10.1109/TIT.2006.883612
http://dx.doi.org/10.1103/PhysRevA.78.062315
http://dx.doi.org/10.1103/PhysRevA.78.062315
http://dx.doi.org/10.1103/PhysRevA.78.062315
http://dx.doi.org/10.1103/PhysRevA.78.062315
http://dx.doi.org/10.1016/j.physleta.2013.12.009
http://dx.doi.org/10.1016/j.physleta.2013.12.009
http://dx.doi.org/10.1016/j.physleta.2013.12.009
http://dx.doi.org/10.1016/j.physleta.2013.12.009
http://dx.doi.org/10.1088/1367-2630/12/8/083039
http://dx.doi.org/10.1088/1367-2630/12/8/083039
http://dx.doi.org/10.1088/1367-2630/12/8/083039
http://dx.doi.org/10.1088/1367-2630/12/8/083039
http://dx.doi.org/10.1103/PhysRevB.85.174533
http://dx.doi.org/10.1103/PhysRevB.85.174533
http://dx.doi.org/10.1103/PhysRevB.85.174533
http://dx.doi.org/10.1103/PhysRevB.85.174533
http://dx.doi.org/10.1103/PhysRevB.88.224507
http://dx.doi.org/10.1103/PhysRevB.88.224507
http://dx.doi.org/10.1103/PhysRevB.88.224507
http://dx.doi.org/10.1103/PhysRevB.88.224507
http://dx.doi.org/10.1103/PhysRevA.54.1862
http://dx.doi.org/10.1103/PhysRevA.54.1862
http://dx.doi.org/10.1103/PhysRevA.54.1862
http://dx.doi.org/10.1103/PhysRevA.54.1862
http://dx.doi.org/10.1109/18.681315
http://dx.doi.org/10.1109/18.681315
http://dx.doi.org/10.1109/18.681315
http://dx.doi.org/10.1109/18.681315
http://dx.doi.org/10.1103/PhysRevA.54.1098
http://dx.doi.org/10.1103/PhysRevA.54.1098
http://dx.doi.org/10.1103/PhysRevA.54.1098
http://dx.doi.org/10.1103/PhysRevA.54.1098
http://dx.doi.org/10.1088/1367-2630/14/3/033044
http://dx.doi.org/10.1088/1367-2630/14/3/033044
http://dx.doi.org/10.1088/1367-2630/14/3/033044
http://dx.doi.org/10.1088/1367-2630/14/3/033044
http://dx.doi.org/10.1088/1367-2630/14/6/063006
http://dx.doi.org/10.1088/1367-2630/14/6/063006
http://dx.doi.org/10.1088/1367-2630/14/6/063006
http://dx.doi.org/10.1088/1367-2630/14/6/063006
http://dx.doi.org/10.1103/PhysRevA.88.012311
http://dx.doi.org/10.1103/PhysRevA.88.012311
http://dx.doi.org/10.1103/PhysRevA.88.012311
http://dx.doi.org/10.1103/PhysRevA.88.012311
http://dx.doi.org/10.1103/PhysRevA.83.042330
http://dx.doi.org/10.1103/PhysRevA.83.042330
http://dx.doi.org/10.1103/PhysRevA.83.042330
http://dx.doi.org/10.1103/PhysRevA.83.042330
http://dx.doi.org/10.1103/PhysRevB.79.161408
http://dx.doi.org/10.1103/PhysRevB.79.161408
http://dx.doi.org/10.1103/PhysRevB.79.161408
http://dx.doi.org/10.1103/PhysRevB.79.161408
http://dx.doi.org/10.1103/PhysRevLett.105.077001
http://dx.doi.org/10.1103/PhysRevLett.105.077001
http://dx.doi.org/10.1103/PhysRevLett.105.077001
http://dx.doi.org/10.1103/PhysRevLett.105.077001
http://dx.doi.org/10.1103/PhysRevB.90.115404
http://dx.doi.org/10.1103/PhysRevB.90.115404
http://dx.doi.org/10.1103/PhysRevB.90.115404
http://dx.doi.org/10.1103/PhysRevB.90.115404



