
PHYSICAL REVIEW B 105, 245308 (2022)

Two-qubit controlled-Z gates robust against charge noise in silicon while compensating
for crosstalk using neural network
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The fidelity of two-qubit gates using silicon spin qubits is limited by charge noise. When attempting to
dynamically compensate for charge noise using single-qubit echo pulses, crosstalk can cause complications.
We present a method of using a deep neural network to optimize the components of an analytically designed
composite pulse sequence, resulting in a two-qubit gate robust against charge noise errors while also taking
crosstalk into account. We analyze two experimentally motivated scenarios. For a scenario with strong electron
dipole spin resonance driving and negligible crosstalk, the composite pulse sequence yields up to an order of
magnitude improvement over a simple cosine pulse. In a scenario with moderate electron spin resonance driving
and appreciable crosstalk such that simple analytical control fields are not effective, optimization using the neural
network approach allows one to maintain order-of-magnitude improvement despite the crosstalk.
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I. INTRODUCTION

Silicon devices, such as those using SiMOS and Si/SiGe,
are a promising platform for scalable quantum computation
due to the small size of the qubits and existing industrial in-
frastructure [1]. Arbitrary quantum computation requires the
ability to perform a universal set of quantum gates with low
error [2]. Although error correcting codes with concatenation
can correct long calculations to arbitrary accuracy they still
require very small initial error rates per gate, on the order of
10−4 [3], even in the case of surface codes if one wishes to
avoid a huge overhead in the number of physical qubits [4]. In
silicon, single-qubit gates with infidelities of 10−3 have been
achieved [5–7]; however, a universal gate set also must contain
an entangling gate. State-of-the-art two-qubit gate fidelities
[8–11] have not reached the same level, mainly because of
charge noise and crosstalk. Crosstalk in the context of this
paper will refer only to an insufficiently large separation be-
tween the resonant frequencies of two qubits (compared to
the strongest driving used, i.e., the maximum Rabi frequency
�max), leading to unwanted rotation of an idle qubit while
another qubit is resonantly driven. Other effects are sometimes
also referred to as crosstalk, such as heating, rectification
effects changing qubit frequency, and capacitive interaction
changing qubit parameters, and are not taken into account
here. This is because the mechanisms behind most of these
effects are not characterized well enough for us to accurately
model them in our Hamiltonian.

In this paper we theoretically design a high-fidelity two-
qubit controlled-Z (CZ) gate in silicon that is robust against
charge noise induced exchange fluctuations and Stark shifts
in the presence of crosstalk. Although silicon is seen as a
scalable platform for quantum computing because of the small

physical size of the qubits, crosstalk becomes a challenge
when multiple qubits are present. The simplest way to circum-
vent crosstalk is to create a large difference, �Ez, between the
Zeeman energy of the target qubit and that of the idle qubits,
but that is challenging to scale up [12]. Methods of dealing
with crosstalk without dynamically correcting exchange fluc-
tuations have been recently proposed [13,14]. Other work has
considered crosstalk while dynamically correcting exchange
fluctuations [15], but absent fluctuations in Zeeman energy.
On the other hand, a method of dynamically correcting fluc-
tuations in both exchange and Zeeman energies in two-qubit
gates has been proposed [16] assuming crosstalk is negligible.
This paper fills the gap in the literature by simultaneously
compensating crosstalk, exchange fluctuations, and Zeeman
energy fluctuations using a combination of a composite pulse
sequence and neural network shaped segments.

II. MODEL

The two-qubit system consists of two exchange coupled
quantum dots in silicon. The system is known to be well
described by an extended Heisenberg model [17]:

H0 = J (V )

4
(XX + YY + ZZ − II )

+ μBg1(Bx,1XI + Bz,1ZI )

+ μBg2(Bx,2IX + Bz,2IZ ), (1)

where J (V ) is the exchange coupling strength as a function
of the barrier voltage V , X,Y, Z are the Pauli matrices with
Kronecker product assumed, μB is the Bohr magneton, gi is
the electron g factor of the ith qubit, and Ba,i is the magnetic
field in the a direction at the ith qubit. Changes in the barrier
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gate voltage change the position of the dots, and in exper-
iments with position-dependent magnetic fields this would
change the fields at the dots if other plunger gates are not
used to compensate to keep the dots in place as in Ref. [8].
Additionally the barrier gate voltage is observed to affect
the resonant frequencies of the qubits [8,18] via spin-orbit
interaction [19]. To take this into account, device-dependent
functions f1(V ) and f2(V ) are introduced to the Hamiltonian,
H1 = H0 + f1(V )ZI + f2(V )IZ . In experiments, the Zeeman
energies, defined as Ez,i = μBgiBz,i, are usually large, on the
order of h × 10 GHz where h is Planck’s constant, compared
to the other terms, on the order of h × 10 MHz or less, in the
Hamiltonian [8]. To simplify the Hamiltonian, one typically
moves to the rotating frame defined by R = e(i/2)(Ez,1ZI+Ez,2IZ )t .
After the rotating wave approximation (RWA), the rotating
frame Hamiltonian, HR = RHR† + ih̄(∂t R)R†, becomes

HR � J (V )

4
ZZ + f1(V )ZI + f2(V )IZ

+ �1

2
(cos φ1XI + sin φ1Y I )

+ �2

2
(cos φ2IX + sin φ2IY ), (2)

where the oscillating magnetic field along x seen by the
electron in the laboratory frame is applied by electron spin
resonance (ESR) or electron dipole spin resonance (EDSR)
and is taken to be composed of two tones at the two resonant
frequencies, Bx,i = �i cos(Ez,it + φi ). The approximation in
the rotating frame of neglecting the fast counter-rotating terms
has already been applied in the above.

Using the Hamiltonian in Eq. (2) it is quite simple to create
a naive CZ gate, equivalent to ei(π/4)ZZ , by simply turning off
the ESR/EDSR field and pulsing J (V ) adiabatically (so as not
to violate the RWA) such that the area of the exchange pulse is
equal to π/2. This type of CZ gate is distinct from a CROT gate
[20] which requires single-qubit driving at exchange-shifted
resonances. In an adiabatic CZ gate, any residual IZ and ZI
rotations from f1(V ) or f2(V ) can then be compensated with
virtual z rotations. However, Eq. (2) does not take charge
noise or crosstalk into account and therefore such a naive CZ

gate will not perform well if either is significant. We will use
more sophisticated methods of designing the gate, presented
in Sec. III in the interest of a self-contained discussion.

Charge noise causes fluctuations in the electrostatic en-
vironment of each dot, equivalent in their effect to fictional
fluctuations in the gate voltages [21], which in turn causes
fluctuations in the exchange strength J (V ) as well as fluc-
tuations in the g factors. The fluctuations in exchange are
reflected in Eq. (1) by taking J (V ) −→ J (V ) + dJ

dV δV . The
g factors depend linearly on the electric potential with �g �
0.002/V [22] and effective potential fluctuations are on the
order of 10 μV [16,23,24], resulting in fluctuations in the
g factors of �g ∼ 10−8. These fluctuations of g factor do
not result in large errors for typical ESR or EDSR strengths
less than h × 10 MHz. However, the Zeeman energies can be
on the order of h × 10 GHz so even small g-factor fluctua-
tions are amplified by the large uniform magnetic field and
need to be taken into account by changing fi(V ) −→ fi(V +
δV ). Additionally, isotopic impurities in the silicon can

lead to nuclear spin noise resulting in unwanted Overhauser
fields which can be taken into account by adding δEz,1ZI +
δEz,2IZ to the Hamiltonian. So, there are noise terms in the
Hamiltonian on the generators IZ , ZI , and ZZ . This noise will
be dealt with in Sec. IV A assuming the RWA of Eq. (2) holds.

However, if crosstalk is significant, meaning �EZ ≡
Ez,1 − Ez,2 is on the order of J or �i, the RWA is not a good
approximation. In that case one must work with a significantly
more complicated Hamiltonian, as considered in detail in
Sec. IV B.

III. METHODS

A. Pulse sequence

To correct for fluctuations in exchange it is possible to use
a pulse sequence as shown in Ref. [16],

Useq = e−iηIX e−iζZZ ei(θ/2)IX e−i(π/2)ZZ e−i(θ/2)IX e−iζZZ eiηIX ,

(3)

where the angles are defined through the rela-
tions ζ = −π

4 sec θ , sec θ = 2
π

sinc−1
√

2
π

, and tan η =
tan θ sec( π

2 sec θ ). In Eq. (3) the single-qubit driving was
chosen to be on the second qubit; however, the first qubit
would also have been a valid choice.

This composite sequence contains segments where the
exchange is turned on and off adiabatically while the
ESR/EDSR remains off, resulting in two-qubit entangling ZZ
phases, and segments where the exchange remains off while
the ESR/EDSR is turned on and single-qubit x rotations are
performed.

Additionally, errors caused by fluctuations in Zeeman en-
ergy during the ZZ segments can be canceled by splitting
those segments in half and inserting π pulses about x on both
qubits to echo out the Zeeman error,

Useq,echo = e−iηIX e−i(ζ/2)ZZ XXe−i(ζ/2)ZZ XXei(θ/2)IX e−i(π/4)ZZ

× XXe−i(π/4)ZZ XXe−i(θ/2)IX e−i(ζ/2)ZZ

× XXe−i(ζ/2)ZZ XXeiηIX . (4)

During each entangling ZZ segment, J (V ) is to be
pulsed such that the evolution is described by the adiabatic
Hamiltonian,

Had = 2π

[
J (V )

ZZ

4
+

√
[J (V )]2 + �E2

z

ZI − IZ

4

]
, (5)

where �Ez = Ez,1 − Ez,2 is the difference in Zeeman energies
between the two qubits. By pulsing J (V ) adiabatically the
small fluctuations in J (V ) caused by charge noise cause the
resulting error channels to be limited to ZI , IZ , and ZZ .
Likewise, fluctuations in Zeeman energies also result in ZI
and IZ errors.

This pulse sequence does, however, assume that the single-
qubit x rotations are error free, which is not physical.
Nevertheless, if the single-qubit x rotations are engineered to
be robust against charge noise, the total pulse sequence will be
robust against charge noise. To find good robust single-qubit
rotations and adiabatic pulses to compose the pulse sequence,
a neural network approach will be used, as explained in the
next section.
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FIG. 1. Schematic representation of a neural network where the
input, output, and hidden layers are shown as circles and the weights
are shown as arrows.

B. Neural network

To find a robust pulse shape while also canceling crosstalk
for two qubits requires that we include non-RWA corrections
to Eq. (2). Handling the resulting Hamiltonian (discussed in
Sec. IV B) analytically is difficult because the terms in the
Hamiltonian do not commute in a way such that they form
a simpler subalgebra of su(4) such as su(2). Therefore the
error resulting from this Hamiltonian appears on the entirety
of su(4), which is 15-dimensional. Consequently, canceling
errors in such a large space is handled numerically through
optimization of a neural network instead of analytically.

The cost function to be minimized is a weighted sum of
two terms. The first term, which makes sure the desired gate
is performed in the absence of noise, up to single-qubit z ro-
tations which can be performed virtually [25], is the noiseless
infidelity 1 − F :

min
�ϕ

[
1 − 1

4
|Tr(e−i[(ϕ1/2)ZI+(ϕ2/2)IZ]Uc

× e−i[(ϕ3/2)ZI+(ϕ4/2)IZ]U †
t )|2

]
, (6)

where Ut is the targeted rotation of the optimization and Uc is
the noiseless evolution operator calculated numerically using
the control Hamiltonian of that optimization problem. The
adiabatic infidelity is the same noiseless infidelity where Ut is
replaced with the adiabatic evolution operator, Uad, calculated
with the same control field as Uc.

The second term of the cost function is the Frobenius norm
of the first-order Magnus term of the noise propagator, E , and
it determines how robust the pulse is against the effect of
noise. E is calculated by treating the error perturbatively such
that the Hamiltonian is described by H = Hc + εHε where all
error terms are in Hε . For small errors ε the full evolution
operator then becomes

U ≈ Uceiε
∫

Uc (t )Hε (t )U †
c (t )dt = UceiεE , (7)

where E = ∫
Uc(t )Hε (t )U †

c (t )dt .
We follow Ref. [26] in using a deep neural network to

create our pulse shapes for robust and crosstalk resistant gates.

A neural network can have many free parameters, in our case
up to 6000, while still allowing rapid optimization due to
the fact that the smooth shapes allow the use of efficient
adaptive ordinary differential equation solvers and the fact
that the gradient of the cost function is efficiently evaluated
using automatic differentiation via backpropagation. The lat-
ter results from the structure of a neural network, which is a
function that takes an input vector, in our case time t , and gives
an output vector calculated through hidden layers, vectors ai,
defined as

ai+1 = v(Wiai + bi ), (8)

where Wi is the weight matrix between the hidden layers ai

and a+1, bi is the vector of biases, and v(x) is a nonlinear
activation function which acts on each element. Figure 1
shows a representation of the hidden layers as circles and the
connecting weights as arrows. In our case, a single element
input, time t , is used and up to five elements of output were
calculated through two hidden layers of size 32 with an acti-
vation function v(x) = tanh(x). The final output layer has no
activation function and is therefore not limited in magnitude
or sign. Some of the corresponding physical outputs of the
neural network are, however, actually limited. The exchange
J (V ) is always positive and bounded by the device’s opera-
tional range, therefore the output for J (V ), a3,J , is fed into
a wrapping function such that the final output is bounded,
J (V ) = wJ (a3,J ) = Jmax sin2(a3,J ). Additionally the ESR or
EDSR driving amplitudes are also limited to the device’s
maximum but since they are allowed to be negative they are
wrapped with w�(x) = �max sin(x). The ESR/EDSR driving
phases φi are not physically bounded and so do not need
to be wrapped. The neural network was implemented in the
Julia programming language using the DIFFEQFLUX.JL pack-
age [27]. The BS5 solver from the the ORDINARYDIFFEQ.JL

package [28] was used to solve the Schrödinger equation and
find the value of E . Finally, the RADAM and BFGS optimiz-
ers from the FLUX.JL and OPTIM.JL packages were used for
optimizing the neural network.

IV. RESULTS

A. EDSR device with negligible crosstalk

In this section we consider the case of a device with
a large Zeeman energy splitting, �Ez = h × 103 MHz [8],
and choose values of �max = h × 8 MHz and Jmax = h ×
10 MHz such that the RWA is valid and Eq. (2) can be used
without limiting the fidelity. For this device the exchange de-
pends exponentially on the barrier voltage J (V ) = J0e2αV with
J0 = h × 0.058 MHz and α = 12.1/V. The barrier-induced
Stark shifts of the resonant frequencies are fi(V ) = V γ βi,
with γ = 1.2, β1 = h × −2.91 MHz/V γ , and β2 = h ×
67.1 MHz/V γ [8].

With such a large maximum Rabi frequency and maximum
exchange it is very fast to implement the pulse sequence from
Ref. [16]. To this end the EDSR amplitude is ramped as [1 −
cos(πt/tr )]/2 up to its maximum amplitude with tr = 10 ns as
shown in Fig. 2. The exchange J (V ) is also shown in Fig. 2
and is pulsed adiabatically during the ith segment with the
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FIG. 2. Analytical control fields vs time for the pulse sequence
of Eq. (4) when crosstalk is negligible. Top: Exchange J , and EDSR
tone amplitudes �1 and �2 where h is Planck’s constant. Bottom:
Accompanying phases of the EDSR tones.

form

Ji(t ) = Jmax,i

tanh
(

t
TRamp,i

)
tanh

( TAd,i−t
TRamp,i

)
tanh2

( TAd,i

2TRamp,i

) , (9)

where t is the time as measure from the beginning of the
segment, Jmax,i sets the height of the peak, TAd,i is the total
duration of the pulse segment, and TRamp,i is the ramp time.
Jmax,i was manually chosen such that an optimization over the
ramp time yielded the lowest total time while still having an
adiabatic infidelity, as defined in Sec. III B, below 10−6. For
the ei(η/2)ZZ pulse section Jmax,1 = h × 4.5 MHz, TRamp,1 =
0.095 μs and TAd,1 ≈ 0.109 μs. For the ei(π/4)ZZ pulse section
Jmax,2 = h × 7 MHz, TRamp,1 ≈ 0.12 μs and TAd,1 ≈ 0.107 μs.
The resulting pulse sequence is ≈1.12 μs long which is about
11 times longer than the uncorrected half cosine pulse. To cre-
ate a shorter robust pulse the neural network was used which
resulted in a single shot pulse which is 0.5 μs long. The shape
of the control fields for the single shot pulse are represented
in Fig. 3. Although the single shot pulse has the benefit of
being faster than the pulse sequence by a factor of about 2, the
exchange pulse is nonadiabatic and requires more bandwidth.
The single-shot pulse has a 3 dB bandwidth of approximately
28 MHz which is limited by the ESR bandwidth. Additionally,
when applying a hard cutoff low-pass filter, a cutoff frequency
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FIG. 3. Neural network designed control fields vs time for
single-shot pulse when crosstalk is negligible. Top: Exchange J , and
EDSR tone amplitudes �1 and �2. Bottom: Accompanying phase
modulation of the EDSR tones.

of 770 MHz was required for an infidelity of 10−3 to be
maintained in the absence of noise. The 3 dB bandwidth is
well below the bandwidth modern arbitrary waveform gener-
ators such as the 640 MHz at 1.6 GS/s sample rate accessible
with the Tektronix 5014C used in Ref. [29]. Although a hard
cutoff low-pass filter required more than 640 MHz it is not
such a large difference that such a value might be capable of
being reached in the future. The resulting infidelity versus
quasistatic noise for both pulses is represented in Fig. 4. The
infidelity of a half cosine-shaped pulse for an uncorrected CZ

gate as used in Ref. [8] is also plotted for comparison. For
the uncorrected gate to have an infidelity of 10−4 requires
fluctuations of barrier gate voltage to be less than 0.3 mV,
whereas the pulse sequence or single-shot pulse brings that
threshold up to 1.5 or 1 mV, respectively. All three gate
methods are similarly sensitive to Zeeman energy fluctua-
tions, with an infidelity under 10−4 for fluctuations below
∼h × 13 kHz. The sequence and single-shot pulses are not
designed to be robust against fluctuations in Zeeman energy,
as the sequence’s single-qubit gates are not robust against
these fluctuations and the single-shot pulse was not optimized
for these fluctuations.

These results, however, do not take the typical 1/ f fre-
quency dependence of charge noise into account. To analyze
how nonstatic noise affects the fidelity, we calculate the
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FIG. 4. Top: Infidelity vs barrier fluctuations, δV . Bottom: Infi-
delity vs average Zeeman fluctuation.

filter function, F (ω), using the method from Ref. [30] with
appropriate multiplicative noise weights χ for fluctuations
in V from the formalism in Ref. [16]. The filter function is
plotted in Fig. 5 for the half cosine pulse and the single-shot
pulse. We have not included results for the pulse sequence in
Fig. 5 because the perturbative filter function method requires
the error in the Hamiltonian be linearized in δV , which is not
possible at V = 0 (which is the case for most of the pulse
sequence) for errors of the form (V + δV )γ , so the method is
not directly applicable in that situation.

To compare all three gate methods, the infidelity as a result
of frequency-dependent noise is calculated by averaging over
500 simulations of 1/ f noise realization for δV with a partic-
ular infrared cutoff frequency, ωir, and high-frequency cutoff,
ωcutoff, of the noise. 1/ f noise realizations were generated
using a sum of random telegraph processes with switching
rates logarithmically distributed from ωir to ωcutoff. This re-
sults in a 1/ f noise spectrum between ωir and ωcutoff, with a
flat spectrum below that range and a 1/ f 2 spectrum above it
[31]. The resulting noisy signal is then shifted and has a mean
of 0 over the calibration time and rescaled to have a standard
deviation of δVrms = 3 mV, which is the noise strength where
the single-shot pulse and the pulse sequence have the same
quasistatic infidelity of 5 × 10−3 in Fig. 4. The average fi-
delity of the three pulses is plotted in Fig. 5 as a function
of ωcutoff with ωir = 10−5 rad × Hz (i.e., daily calibration).
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FIG. 5. Top: Filter function, F (ω), for the charge noise, of the
single-shot pulse and the half cosine pulse vs noise frequency ω in the
top plot. Bottom: Average fidelity of the pulse sequence, the single-
shot pulse, and the half cosine pulse vs cutoff frequency, with daily
calibration and δVrms = 3 mV.

This shows that for 1/ f noise in this frequency band (which
extends up to the largest frequency in the control Hamilto-
nian), the pulse sequence as well as the single-shot pulse
improve the infidelity. However, the robustness of gates pro-
duced with the neural network approach relies on the specific
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FIG. 6. Shaped exchange pulses Jπ/4(t ) and Jζ (t ) for an adiabatic
e−i(π/4)ZZ and rotation represented by the dashed blue line and the
solid red line. The strength of the exchange Jζ (t ) on the left side of
the plot is scaled by a factor of ≈1.63 compared to the strength of
the exchange Jπ/4(t ) shown on the right.
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FIG. 7. Shaped pulse for an XX gate robust against Zeeman
fluctuations. Top: Two-tone ESR amplitude modulation. Bottom:
Accompanying phase modulation.

shape of the functions J (V ) and fi(V ). For example, for the
single-shot pulse if γ is decreased the infidelity in the absence
of error scales quadratically with the decrease resulting in
a less robust pulse. At a 2% decrease in γ the infidelity
of the single-shot pulse in the absence of error becomes
6.2 × 10−3. This means that an accurate model of the system
is required.

Another experimental concern could be the needed preci-
sion of the EDSR amplitude to achieve high fidelity. In the
absence of noise, an infidelity of 10−3 is still achieved with
relative errors in EDSR amplitude of 0.3% for the single-shot
pulse and 0.4% for the pulse sequence, a practical level for
typical arbitrary waveform generators [32].

B. ESR device with non-negligible crosstalk

Now we consider a two-qubit device with non-negligible
crosstalk. We present two approaches. First, we consider
again using the analytical composite pulse sequence of
Eq. (4), but this time with each individual segment opti-
mized using a deep neural network as discussed in Sec. III B.
Second, we try dropping the pulse sequence structure
and creating a single-shot pulse entirely via the neural
network.

The Zeeman splitting at the barrier gate idle voltage is
taken to be �Ez = h × 7.05 MHz [18] and is comparable
in size to the typical values of exchange (a few megahertz)
and ESR Rabi frequency (nearly 1 MHz), so it is not possi-
ble to apply the RWA. Consequently the full rotating frame
Hamiltonian must be used. For two-tone resonant driving the
Hamiltonian for this system has the form

H (t ) = J (t )

4
[ZZ + cos �Ezt (XX + YY ) + sin �Ezt (XY − Y X )] + V

(
dEz,1

dV
ZI + dEz,2

dV
IZ

)

+ �1(t )

2

[
cos φ1(t )XI + sin φ1(t )Y I + 1

r12
cos

(
�Ezt

2
+ φ1(t )

)
IX + 1

r12
sin

(
�Ezt

2
+ φ1(t )

)
IY

]

+ �2(t )

2

[
cos φ2(t )IX + sin φ2(t )IY + r12 cos

(
− �Ezt

2
+ φ2(t )

)
XI + r12 sin

(
− �Ezt

2
+ φ2(t )

)
Y I

]
, (10)

where the nonuniform strength of the ESR signal across the
sample results in a ratio of r12 = 0.812 between the driv-
ing of the two dots and the barrier gate voltage adjustment
functions are fi(V ) = V dEz,i

dV [33]. The exchange depends
on the barrier gate voltage as J (V ) = Joffe(V −Voff )/V0 where
Joff = h × 0.928 kHz, Voff = −0.101 V, and V0 = 0.0266 V
[18]. The maximum ESR strength for the modeled device
is �max = 507 kHz for the first qubit and �max = 625 kHz
for the second qubit because of the nonuniform ESR signal
strength. The values of the derivatives in the barrier gate
adjustment functions are dEz,1

dV = h × 7.07 MHz/V and dEz,2

dV =
h × 5.05 MHz/V. The shapes of �i and φi are determined
with the neural network to result in the necessary robust
pulses.

1. Optimized segments in a composite pulse

First, we present shaped exchange pulses so as to obtain
a shortcut to adiabaticity during the entangling segments of
Eq. (4). The speedup for these pulses is about 1.5 times
faster than pulses with the same adiabatic infidelity, as de-
fined in Sec. III B, found by limiting the flip probability
determined by perturbation theory as in Ref. [16]. How-
ever,the improvement in the total pulse time is not very
large and similar performance can be found if the slower
adiabatic pulses, which require less bandwidth, are used.
The ESR line is not driven during these segments. The
adiabatic shape of J (V ) is determined by a neural net-
work with a modified cost function. The robustness term
E in the cost function for the adiabatic J was replaced
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FIG. 8. Shaped pulse for a e−i{[π/2)]X I+[(θ−π )/2]IX } rotation robust
against Zeeman fluctuations. Top: Two-tone ESR amplitude modula-
tion. Bottom: Accompanying phase modulation.

with the adiabatic infidelity multiplied by a weighting factor
of 0.1.

The e−i(π/4)ZZ segment of Eq. (4) is performed by pulsing
J as Jπ/4(t ) shown in Fig. 6. All neural networks for pulse
shapes and pulse segments determined by neural networks as
well as the accompanying single-qubit rotations [cf. Eq. (6)],
ϕi, are included in the Supplemental Material [34]. Similarly,
the e−i(ζ/2)ZZ segment is performed by pulsing J as Jζ (t ) also
shown in Fig. 6 with its vertical axis rescaled by ≈1.63. The
two pulse shapes in Fig. 6 are not simply related by a scale
factor because the fi(V ) functions on terms in Eq. (10).

Now we present shaped ESR pulses to perform the single-
qubit rotation segments of Eq. (4) such that they are robust
against charge noise, which, along with the structure of the
composite sequence itself, renders the overall entangling gate
robust. The exchange coupling is turned off during these seg-
ments while two-tone ESR driving is used.

The robust XX segment is shown in Fig. 7, where the
amplitude and phase of each tone is simultaneously mod-
ulated. The XXe−i[(θ/2)IX ] segment is performed in one
pulse and is shown in Fig. 8. Additionally, XXei(θ/2)IX =
ei(π/2)IZ (XXe−i(θ/2)IX )ei(π/2)IZ , so that segment of the se-
quence can also be performed by pulsing as in Fig. 8 and
accounting for the additional z rotations in software.

The XXei[(η/2)IX ] segment is likewise performed in one
pulse and shown in Fig. 9. Finally the robust ei(η/2)IX pulse
is performed as shown in Fig. 10.
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FIG. 9. Shaped pulse for a e−i{(π/2)X I−[(π+η)/2]IX } rotation robust
against Zeeman fluctuations. Top: Two-tone ESR amplitude modula-
tion. Bottom: Accompanying phase modulation.

The infidelity of the entire pulse sequence versus barrier
gate voltage fluctuations and Zeeman fluctuations is shown
in Fig. 11. (The “single-shot” pulse is discussed in the next
section.) For comparison, Fig. 11 also includes the infidelity
of a naive square pulse with exchange strength J = �Ez√

3
and

duration T = 3
2�Ez

to create a CZ gate. An infidelity below

10−3 is achieved for fluctuations in V below 1.2 mV or fluc-
tuations in average Zeeman energies of both qubits below
h × 6 kHz. This is an improvement over the naive square pulse
which never achieves an infidelity of 10−3 due to the crosstalk.
The entire pulse sequence requires 1.2 μs of entangling time
and about 20.5 μs of single-qubit rotation time for a total
sequence time of 21.7 μs. One could shave off 5.5 μs by
omitting the outer x rotations, which do not change the en-
tangling properties of the gate, at the cost of not having a
standard CZ gate. The infidelity is also limited by the time
dependence of the noise since charge noise is typically 1/ f
noise and not quasistatic as assumed above. In this section the
effect of 1/ f noise will be estimated instead of directly sim-
ulated as in Sec. IV A because the pulses (especially the
pulse sequence) are longer and more complicated, and are
thus numerically more difficult to simulate with rapid fluc-
tuations. It is easy to estimate a limit on the infidelity of 1 −
exp[−(Tgate/T2,Hahn)2] ∼ 3 × 10−4 [35], for T2,Hahn = 1.2 ms
[36]. This could be improved greatly by device improvements
such as increasing the maximum ESR drive strength as well
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FIG. 10. Shaped pulse for a e−i(η/2)IX rotation robust against
Zeeman fluctuations. Top: Two-tone ESR amplitude modulation.
Bottom: Accompanying phase modulation.

as a longer T2,Hahn. In particular, the infidelity would decrease
as the inverse square of the Rabi frequency which is the main
bottleneck for this approach.

2. Simultaneous single-shot shaped pulses on J and ESR

It is desirable to find a faster robust entangling gate than
the 22 μs composite sequence of the previous section. One
might think that an option would be to just use the shorter
sequence of Eq. (3) along with faster, nonrobust single-qubit
rotations. That would indeed reduce the gate time down to
about 4 μs, but, although the shorter sequence is robust
against fluctuations in exchange coupling, the g-factor fluc-
tuations due to charge noise ruin the overall robustness of the
sequence.

In this section we demonstrate an alternative to the prior
approach of numerically optimizing the individual segments
of a composite sequence. We show that the desired CZ gate can
be performed faster by abandoning the analytically derived
composite pulse sequence structure of alternating ESR-only
and J-only pulses, instead directly carrying out the more
demanding computational task of optimizing simultaneous
pulse shapes on both. The evolution operator was calculated
using Eq. (10) and the synchronized pulse shapes obtained via
neural network optimization are shown in Fig. 12. The pulse
is shorter than the sequence by about a factor of 5 as it is only
4 μs long. The improvement in performance can be seen in the
fidelity plots shown in Fig. 11 where the infidelity scales better

NN sequence
Naive
NN single shot
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1
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NN corrected
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NN single shot

0.5 1 5 10 50 100
10−5

10−4

0.001
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0.100

1

Ez,1 + Ez,2

2
[h x kHz]

1−
F

FIG. 11. Infidelity of the neural network optimized pulse se-
quence vs quasistatic fluctuations in barrier gate voltage (top) and in
average Zeeman energy (bottom). For comparison the naive square
pulse infidelity is also plotted.

with low Zeeman energy fluctuations than the pulse sequence
and is more robust against barrier fluctuations. An infidelity
of 10−4 is achieved below 1.6 mV fluctuations in barrier
voltage and below h × 5 kHz Zeeman energy fluctuations.
The quicker nature of this pulse results could lead to better
performance depending on the decoherence time. A simple
estimation using T2,Hahn = 1.2 ms [36] limits the infidelity to
1 − F ≈ 1 − exp[−(T/T2,Hahn)2] ≈ 10−5 [35]. The downside
of this pulse is that it requires more bandwidth for J since it
is no longer driven adiabatically. The single-shot pulse has a
3 dB bandwidth of approximately 18.4 MHz, which is limited
by the ESR bandwidth. Additionally, when applying a hard
cutoff low-pass filter, a cutoff frequency of 170 MHz was
required for an infidelity of 10−3 to be maintained in the ab-
sence of noise. This is well below the bandwidth available in
modern arbitrary waveform generators such as the 640 MHz
at 1.6 GS/s sample rate accessible with the Tektronix 5014C
used in Ref. [29], Another experimental concern could be
the needed precision of the ESR amplitude to achieve high
fidelity. In the absence of noise an infidelity of 10−3 is still
achieved with an error in ESR amplitude of 0.9% for the
single-shot pulse and 0.5% for the pulse sequence, which are
again experimentally realistic tolerances [32]. Although the
pulse is robust to charge noise in the presence of crosstalk as
defined in the Introduction, other types of crosstalk, such as
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FIG. 12. Simultaneous shaped pulse of exchange and two-tone
ESR. Top: Amplitudes vs time. Bottom: Accompanying phase mod-
ulation of the ESR tones.

heating and capacitive interactions, are not taken into account
because the mechanisms that cause most of these effects are
not well characterized and thus are not incorporated in our
model. However, if the results of these effects can be quan-
tified in the model Hamiltonian [like the barrier-dependent

resonance shift, fi(V ), included in this work], neural net-
work optimization could be reapplied in the presence of these
effects. The exchange floor J0 can cause unwanted ZZ rota-
tion while doing an uncorrected X gate which can be called
crosstalk. However, the neural network optimization takes J0

into account in the Hamiltonian and can correct this type of
crosstalk as well.

V. CONCLUSION

In this paper we have shown that it is possible to use a
neural network to optimize a robust pulse or pulse sequence to
generate CZ gates robust against crosstalk even in the presence
of noise.

For the case of small crosstalk and large maximum EDSR
driving (Sec. IV A), our approach yielded infidelities of 10−4

for quasistatic fluctuations in V below 1.2 mV or Zeeman
energy fluctuations below h × 12 kHz. While this is a large
improvement over a naive square pulse, it takes significantly
longer at over 1.2 μs. To circumvent the lengthy pulse se-
quence we showed a 0.5 μs single-shot pulse optimized
directly with the neural network which still showed large
improvement over the naive pulse.

For the case of large crosstalk and low maximum ESR
strength (Sec. IV B) it was shown that it is possible to optimize
the pulse sequence from Ref. [16], but it was more efficient
to optimize the whole problem with the neural network since
it was about five times faster. The resulting pulse is limited
in fidelity by the ratio of the gate time, determined by the
ESR amplitude �max, to the timescale on which the charge
noise switches, T2. For predominantly low-frequency noise,
our approach gives order-of-magnitude improvements in
the infidelity due to charge noise.
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