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Josephson junctions constructed from superconductor-semiconductor-superconductor heterostructures have
been used to realize a variety of voltage-tunable superconducting quantum devices, including qubits and
parametric amplifiers. To date, theoretical descriptions of these systems have been restricted to small quantum
fluctuations of the junction phase, making them inapplicable to many experiments. In this paper, we relax
this, employing a path-integral formulation where the phase quantum dynamics is obtained self-consistently
from an underlying many-body formalism. Our method recovers previously known results for small phase
fluctuations, and predicts effects outside of that limit: (i) system capacitances undergo a gate-voltage-dependent
renormalization; and (ii) an additional charge offset appears for asymmetric junctions. Our main results can be
summarized in terms of a single-particle Hamiltonian, which can be directly compared to that of an ordinary
Josephson junction. This more general theory could be a first step towards designing new quantum devices that
go qualitatively beyond voltage-tunable variants of previously known circuits.
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I. INTRODUCTION

Superconducting circuits based on Josephson junctions
(JJs) have been used to realize a variety of devices, includ-
ing quantum amplifiers, digital logic circuits, and photon
detectors. The most intensively studied applications of these
circuits, however, are qubits, making them one of the promis-
ing and fastest-growing platforms for realizing large-scale
quantum information processors [1,2]. Many different JJ-
based qubits have been demonstrated, including the transmon
[3], flux qubit [4], fluxonium [5], and 0−π qubit [6].
The JJs of these circuits have most often been based on
superconductor-insulator-superconductor (S-I-S) tunnel junc-
tions; however, high-quality superconductor-semiconductor
(super-semi) heterostructure JJs have also recently been re-
alized in a variety of materials. These super-semi junctions,
while exhibiting the Josephson effect, carry critical currents
that are tunable via the field effect of an electrostatic gate,
allowing a new class of voltage-tunable quantum circuits such
as the gatemon [7–9], Andreev-pair qubits [10,11], and An-
dreev spin qubits [12,13]. These devices have also served as a
testbed for the underlying Andreev physics of superconduct-
ing weak links, and more recently, as building blocks of new
topologically nontrivial superconducting circuits [14,15].

Much of the theory of super-semi junctions has built
upon the Bogoliubov–de Gennes picture of Andreev transport
in superconducting-normal-superconducting junctions [16],
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with extensions for the practically relevant situation in which
an electrostatic disorder potential forms a quantum dot in the
junction. The low-energy dynamics of these S-QD-S junctions
have been studied in circuits where the junction is shunted
by a small inductance, wherein the gauge-invariant phase
difference between superconducting electrodes is set, apart
from small quantum fluctuations, by the external flux through
the inductance [17,18]. This regime is relevant for Andreev
qubits. However, these theories do not extend to S-QD-S
junctions embedded in arbitrary circuit environments that may
support strong quantum phase fluctuations across the junction
(e.g., transmon or fluxonium circuits).

In this paper, we develop a microscopic theory of a S-
QD-S junction embedded in a capacitive environment in
which quantum fluctuations of the phase may be large. Our
self-consistent treatment of quantum dynamics of the super-
conducting phases reveal two effects that originate from the
underlying many-body physics: (i) a renormalization of the
effective capacitance that shunts the junction, and (ii) appear-
ance of an additional charge offset in the charging energy
for asymmetric junctions. The dependence of both effects on
junction gate voltage makes them important for the analysis,
control, and design of superconducting circuits with S-QD-S
junctions.

II. MANY-BODY TREATMENT
OF SUPERCONDUCTING CIRCUITS

In the phenomenology of JJs and circuit quantiza-
tion [19,20], JJs are treated as nonlinear inductors, and
quantization is postulated from the corresponding classical
Hamiltonian of the circuit [20]. Within this framework, the
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FIG. 1. A capacitively shunted S-QD-S junction embedded in a
general circuit environment that does not restrict phase dynamics.
The leads (blue, with BCS density of states) are tunnel coupled via
tL, tR to the QD (containing a single level). CJ is the capacitance
between the leads, and CbL,CbL are capacitances between the dot and
each lead. VL and VR denote the mean-field voltage variables for each
lead, and εg is the effective energy of the dot level, derived in the
text. V a

L ,V a
R ,V a

d are externally applied voltages across capacitances
CIL , CIR, Cd , respectively. For simplicity, we consider a symmetric
capacitance arrangement, CbL = CbR = Cb, CIL = CIR = CI .

well-known Hamiltonian for a capacitively shunted JJ (such
as a Cooper pair box (CPB) or transmon [3]) is obtained as

ĤCPB = (2e)2

2C�

[n̂ − ng(V a)]2 − EJ cos(φ̂), (1)

reflecting the quantum mechanics of the phase difference
between the two superconducting leads φ ≡ φL − φR, where
the phase φ plays the role of a “coordinate” for the Joseph-
son potential, and the charging energy looks like a classical
expression with shunting capacitance C� , a dimensionless
charge operator, n̂ ≡ −i∂φ , and a charge offset ng(V a) asso-
ciated with an externally applied voltage V a.

This Hamiltonian ĤCPB can be derived self-consistently
from an underlying many-body theory in which a pair of
tunnel-coupled superconducting leads are described by BCS
Hamiltonians, and charging energy is introduced in a many-
body picture. This program was realized in a seminal paper by
Ambegaokar, Eckern, and Schön [21], where the path-integral
formulation of a (grand canonical) partition function ZG ∝
tre−βĤ (β = 1/kBT is the inverse temperature) is evaluated
at a saddle point, generating (self-consistently) the supercon-
ducting order parameters of the leads �eiφL,R , and the voltage
drop across the junction V = VL − VR, both in a mean-field
approach. The partition function is then reduced to an effec-
tive action ZG ∼ ∫

Dφe− S[φ(τ )]
h̄ , from which the Hamiltonian

ĤCPB can be deduced under the “slow phase approximation”
in which φ(τ ) varies slowly over the time scale τ ∼ h̄/�. In
the next order of slow phase expansion, Eckern et al. [22],
and Larkin and Ovchinnikov [23], derived a small renormal-
ization of the shunting capacitance across the junction δCJJ

� =
3π h̄/(32�RN ), where RN is the normal state resistance of
the junction [22]. This capacitance does not significantly
alter the quantization prescription for such circuits [20]; at
the same time its smallness makes it difficult to measure
experimentally.

To summarize the results of this paper, we use the for-
malism of Refs. [21,22] to describe a S-QD-S junction in a
capacitive environment (inset of Fig. 1) and obtain an effective

Hamiltonian with a form that is similar to ĤCPB, given by

Ĥeven = (2e)2

2(C� + δC� )
[n̂ − n̂q(V a, �L,R, εg,�)]2

+ ÛJ (φ, �L,R, εg,�). (2)

Here, the Josephson potential ÛJ , and the charging Hamil-
tonian are matrices acting on the even occupancy (singlet)
space of the dot {|0〉, |↑↓〉}, and depend on the dot’s gate
voltage εg, and the tunneling rates �L,R between the leads
and the dot. The derived charge offset (n̂q) differs from the
assumed form (ng) in the literature [24–26]: it contains new
terms that depend on tunneling asymmetry and dot occupation
(proportional to the Pauli matrices η0 and ηz), moreover, the
capacitance renormalization δC� (�L,R, εg,�) is gate-voltage
tunable. The Josephson potential matrix ÛJ , whose eigen-
values determine the Andreev bound states (ABS) spectrum,
essentially coincides with the results of [18], with the addition
of nonperturbative corrections for finite dot voltage εg.

III. MODEL

By quantizing the classical Hamiltonian of the circuit
shown in the inset of Fig. 1 and combining it with the junction
Hamiltonian, we obtain Ĥ = ĤJ + ĤQ, where

ĤJ =
∑

i=L,R,σ=↑,↓

∫
dr

(
ψ̂

†
i,σ ξ̂iψ̂i,σ − g

2
ψ̂

†
i,σ ψ̂

†
i,−σ ψ̂i,−σ ψ̂i,σ

)

+ d̂†
σ μd d̂σ + (tid̂

†
σ ψ̂i,σ (r = 0) + H.c),

ĤQ = 1

2C�

(
Q̂L − Q̂R

2

)2

− 1

C�

(
Q̂L − Q̂R

2

)
�Q + εd

1

e
Q̂d

+ 1

e2
UQ̂2

d . (3)

ĤJ models the junction (dot and leads) and ĤQ describes a
capacitive circuit environment in terms of the charges Q̂i =∑

σ e
∫

drψ̂†
i,σ ψ̂i,σ and Q̂d = ∑

σ ed̂†
σ d̂σ . The fermionic field

operators for the leads and dot are respectively ψ̂i,σ = ψ̂i,σ (r)
and d̂σ with spin σ , where the dot is modeled as having
a single accessible level [27]. Above, ξ̂i = p̂2

2m∗ − μi is the
kinetic-energy operator for the leads with effective mass m∗,
μi, and μd are chemical potentials for isolated leads and dot,
g is the strength of the BCS pair potential around the Fermi
level, and ti is the tunneling strength between the leads and the
dot. The capacitance across the junction C� = CJ + Cb+CI

2 , the

charging energy of the dot U = e2

4(Cb+ Cd CI
Cd +2CI

)
, the charge offset,

�Q = CI
2 V a owing to an applied voltage V a = V a

R − V a
L , and

the shift in the dot level εd = 4U
e

CICd
2CI +Cd

(V a
d − V a

R +V a
L

2 ), are be-
cause of the electrostatic environment.

To capture the quantum dynamics of the phase difference
between the electrodes, we express the partition function of
the system, ZG = tre−βĤ , as an imaginary-time (τ ) fermionic
coherent state path integral [17,21,23,28,29]. We eliminate
all quartic interaction terms using the Hubbard–Stratonovich
transformation at the expense of introducing auxiliary bosonic
fields �(τ )eiφi (τ ), Vi(τ ), and M(τ ), representing the s-wave
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superconducting order parameters [21,22,28], the voltage of
the leads, and the magnetic Weiss field [29,30], respectively,
followed by saddle point approximations that pin �(τ ) → �,
ih̄∂τφi(τ ) → 2eVi(τ ) (i.e., Josephson relation), and M(τ ) →
M. From self-consistent calculations [30], we find the saddle-
point value of M approximately vanishes for even occupancy
states of the dot at any phase and outside the Kondo regime,

i.e., for � 
 TK =
√

U�
2 e− π

8U�
|U 2−4ε2

g | where � ≡ �L + �R

[31]. Henceforth, unless otherwise noted, we restrict our anal-
ysis to the even occupancy sector and to a set of parameters
that are outside the Kondo regime. Consequently, we take
M = 0, so the overall effect of the Coulomb interaction is
a shift of the dot level [32] by U

2 , which is contained in the
definition of εg = εd + μd + U

2 .
Performing a unitary transformation that shifts all time

dependence owing to φi(τ ) onto the tunneling terms from the
leads [22], we obtain

ZG =
∫

DφLDφRD2�e− 1
h̄

∫ h̄β

0 dτ
∑

k �̄(k,τ )[−G−1(k,τ )]�(k,τ )

× e
1
h̄

∫ h̄β

0 dτ
C�

2

(
V (τ )+ CI

2C�
V a

)2

e−β M2

2U , with

− G−1(k, τ ) = h̄∂τ+⎛
⎜⎜⎝

ξL,kτz + �τx 0 tL√
VL

τze−iτz
φL (τ )

2

0 ξR,kτz + �τx
tR√
VR

τze−iτz
φR (τ )

2

tL√
VL

τzeiτz
φL (τ )

2
tR√
VR

τzeiτz
φR (τ )

2 εgτz + M

⎞
⎟⎟⎠ (4)

where G(k, τ ) is the Green’s function of the junction in
a momentum representation, the term ∝ C� is the capac-
itive energy with V (τ ) = VL(τ ) − VR(τ ) = h̄

2e i∂τφ(τ ), and
�(k, τ ) = � = (ψL, ψR, D)T , where ψi = (ψi,↑, ψ̄i,↓)T , D =
(d↑, d̄↓)T are Grassmann–Nambu spinors, and Vi is the vol-
ume of each lead. We proceed to obtain a description of the
ABS, which have contributions from in-gap and continuum
energies.

IV. IN-GAP CONTRIBUTIONS

By integrating out the fermionic fields ψi(k, τ ) of the leads
while retaining the D(τ ) field, we derive an effective action of
the dot,

SE =
∫ h̄β

0
dτ

[ ∫ h̄β

0
dτ ′D̄(τ )

[ − G−1
dd (τ, τ ′)

]
D(τ ′)

− C�

2

(
h̄

2e
i∂τφ(τ ) + CI

2C�

V a

)2
]
. (5)

In the Green’s function −G−1
dd (τ, τ ′) = (h̄∂τ + εgτz )δ(τ −

τ ′) + �(τ, τ ′), the first term captures the isolated dot,
and the self-energy term �(τ, τ ′) = ∑

i t2
i eiτz

φi (τ )
2 τzgi(τ −

τ ′)τze−iτz
φi (τ ′ )

2 captures the coupling to the leads, where

gi(τ ) ≈ ∑
n(−πνi

h̄ω+�τx√
�2−(h̄ω)2

) e−ωτ

h̄β
|ω=iωn

is the momentum-

integrated Green’s function for isolated leads per volume in
the time-domain within a wide-band approximation, νi is the

density of states per spin at Fermi level, and ωn are fermionic
Matsubara frequencies. We use this nonperturbative result
only for the in-gap contributions; its evaluation in general is
an open problem.

When the ABS bands, ±EA(φ), are well gapped from the
continuum [24,25], and the charging energy is small (EC =
e2/2C� � � leading to slow phase dynamics), the denom-
inators of gi(τ ) can be approximated adiabatically [33] as√

�2 − (h̄ω)2 ≈ ζ = ζ (φ) =
√

�2 − EA(φ)2. ζ is treated as
a constant within the Matsubara summation provided that
the ABS bands are sufficiently flat, EA(φ)∂φEA(φ) � �2 −
E2

A (φ), which is the case in the weak tunneling regime �i �
�. Here, ±EA(φ) are the in-gap ABS levels [34] obtained
from the poles of Gdd (ω) in the static limit, ∂τφi(τ ) →
0. Within this approximation and at low temperatures,
h̄β 
 1/|ω|, G−1

dd (τ, τ ′) ≈ G−1
dd,a(τ )δ(τ − τ ′) becomes local

in time,

G−1
dd,a(τ ) = − 1

Zd

(
h̄∂τ + Zd

[ ∑
i=L,R

−�i

ζ

ih̄∂τφi(τ )

2
τz

+ �i�

ζ
eiτz

φi (τ )
2 τxe−iτz

φi (τ )
2 + εgτz

])
, (6)

where �i ≡ πνit2
i and 1

Zd
≡ 1 + �

ζ
[35]. Upon substituting

this result into Eq. (5), the first term in the action SE produces
a Hamiltonian that is in agreement with Ref. [18], in which
phases were treated as classical parameters and the ∝ φ̇(t )
term was obtained as a diabatic correction.

V. CONTRIBUTIONS OF THE FILLED CONTINUUM

We calculate the contribution from the negative continuum
energies at zero-temperature perturbatively in ti, in the regime
�i �

√
�2 − ε2

g . At energies |h̄ω| � �, the D(τ ) field is a
fast variable and can be integrated out, along with the fields of
the leads ψi(k, τ ) [21,22], to obtain the leading order contri-
bution from the continuum

S(2)
T = 1

2
Tr

∫ h̄β

0

∫ h̄β

0
dτdτ ′G0(τ − τ ′)δG−1(τ ′)

× G0(τ ′ − τ )δG−1(τ ) (7)

(in time domain). Here, δG−1(τ ) is the off-diagonal
tunneling part of G−1(τ ) in Eq. (4), and G0(τ ) =
diag(VLgL(τ ),VRgR(τ ), gd (τ )) contains the momentum-
integrated Green’s functions of the uncoupled leads and
dot.

In order to evaluate G0(τ ), we first evaluate gi(τ ). At low
temperatures, h̄β 
 h̄/�, gi(τ ) ≈ −νi�

1
h̄ [sgn(τ )K1(|τ |�

h̄ ) +
K0(|τ |�

h̄ )τx] where K0,1(x) are the modified Bessel func-

tions of the second kind. Similarly, gd (τ ) = − 1
h̄ sgn(τ )e− εgτz

h̄ τ .
Because K0,1(|τ |�

h̄ ) decay exponentially for |τ | 
 h̄/�, we
expand the rest of the integrand in the expression for S(2)

T in
powers of δτ = τ − τ ′ around τ̄ = τ+τ ′

2 [22,36]. After ex-
panding the phases φi(τ ) − φi(τ ′) = ∂τ̄ φ(τ̄ )δτ + O(δτ 3) and
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the exponent containing phases up to second order in δτ ,
we integrate out δτ . The negative continuum contributions

to each ABS are extracted as S(2)
cont = 1

2 (S(2)
T [φL, φR, εg] −

S(2)
T [0, 0, 0]),

S(2)
cont ≈

∑
i

∫ h̄β

0
d τ̄

(
U c

i − qc
i

h̄

e
i∂τ̄ φi(τ̄ ) + Cc

i

2

[
h̄

2e
∂τ̄ φi(τ̄ )

]2
)

,

U c
i = −�i

2

π
εg

arcsin εg

�√
�2 − ε2

g

, qc
i = −�ie

εg + �2 arcsin
εg
�√

�2−ε2
g

π
(
�2 − ε2

g

) , Cc
i = �i2e2

2�2 + ε2
g + 3�2εg

arcsin
εg
�√

�2−ε2
g

π
(
�2 − ε2

g

)2 (8)

within the slow phase approximation |ih̄∂τ̄ φi(τ̄ )| � � − |εg|
for |εg| < �, and U c

i , qc
i , Cc

i respectively determine the energy
shift, charge offset, and capacitance renormalizations for each
lead. The dynamic contributions, ∝ qc

i ,Cc
i , are associated with

effects of quantum phase fluctuations, see Eq. (11) below. In a
circuit representation, Cc

i is a capacitance that is in parallel to
capacitances between the dot and the leads (like Cbi in Fig. 1).

Higher order corrections in the slow phase approximation
become significant as |εg| approaches �; for typical gatemon
values EC/h � 0.5 GHz and �/h ∼ 40–50 GHz, [24,25], the
above expression remains adequate for |εg| � 0.7� (with a
truncation error up to ≈5%).

S(2)
T corresponds to a sum of bubble diagrams that can

be interpreted as the creation (at time τ ) and annihilation
(at time τ ′) of virtual particle-hole pairs by two tunneling
events, with one of the pair located at either of the leads
experiencing a potential ±eVi(τ ) and the other at the dot
experiencing ∓εg for a duration |τ ′ − τ | � h̄

�−|εg| . This results
in the Vi(τ )-dependent (quadratic, due to expansion in δτ )
and εg-dependent contributions to the ABS energies obtained
above.

We have so far obtained the leading order correction to
the capacitance and charge offset. The lack of φi(τ ) de-
pendence in S(2)

cont is expected, since it is of second order
in tunneling. In order to capture the leading order correc-
tions to the supercurrent, we calculate the next order term

in the tunnelings by neglecting phase fluctuations, S(4)
T
h̄ =∑

n
1
4 Tr([G0(iωn)δG−1]4). This static treatment disregards

next order contributions to the capacitance and charge offset
that come with an additional smallness factor ∼�i/

√
�2 − ε2

g .
The continuum contribution is S(4)

cont = ∫ h̄β

0 dτU c(φ(τ ))
where

U c(φ) =
−2�L�R�2 sin2 φ

2 + �2ε2
g

(
1 + �2

�2−ε2
g

)
�

(
�2 − ε2

g

) . (9)

For larger εg � �, the contribution of this term to the super-
current can become as important as the in-gap contributions
[∂φEA(φ) ∼ ∂φU c(φ)].

The combined energy shift defined as the static portions
of S(2)

cont and S(4)
cont is given by Econt(φ) ≡ ∑

i=L,R U c
i + U c(φ),

which is in numerical agreement with the nonperturbative
result given in Eq. (12) of Ref. [18] for �i �

√
�2 − ε2

g . For

�i, εg � �, it simplifies to

Econt(φ) ≈ − 2

π
�

ε2
g

�2
− 2�L�R

�

(
1 + ε2

g

�2

)
sin2 φ

2
+ 2�2ε2

g

�3
.

(10)

VI. PHASE QUANTIZATION: CONVERTING PATH
INTEGRAL TO QUANTUM HAMILTONIAN

Combining the in-gap and continuum contri-
butions results in the effective action: SABS =∫ h̄β

0 d τ̄ D̄(τ̄ )[−G−1
dd,a(τ̄ )]D(τ̄ ) + S(2)

cont + S(4)
cont − C�

2 ( h̄
2e i∂τφ(τ )

+ CI
2C�

V a)2. At this point, it is convenient to express the
action in terms of difference and average phases φ(τ̄ ) and
φav(τ̄ ) = φL (τ̄ )+φR (τ̄ )

2 . The weakly coupled φ(τ ) and φav(τ )
fields can be decoupled perturbatively, and the confinement
potential of φav(τ ) can be gauged away. It can be shown that
the partition function obtained from the Hamiltonian

Ĥ = 4ẼC (n̂ − ñg − nzD̂
†τzD̂)2 + Econt(φ)

+ Zd D̂†

(
�

ζ

[
� cos

φ̂

2
τx − δ� sin

φ̂

2
τy

]
+ εgτz

)
D̂,

(11)

is ZG ∝ ∫
Dφe−SABS/h̄. The average phase φ̂av(τ ) does not ap-

pear in Ĥ , since its conjugate charge operator commutes with
Ĥ , which allows φ̂av(τ ) to be replaced with a constant. Above,
n̂ and φ̂ are conjugate quantum operators satisfying [φ̂, n̂] = i
as a result of the mapping of the functional integration over
φ(τ ) onto operator formalism, and D̂ = (d̂↑, d̂†

↓)T is the dot
field operator in Nambu space. The charging Hamiltonian
contains the charging energy ẼC = e2

2(C�+δC� ) with

δC� (εg) = [(
Cc

L

)−1 + (
Cc

R

)−1]−1
, (12a)

nz(εg) = C� + Cc
L+Cc

R
4

C� + δC�

δ�

4(ζ + �)
, (12b)

ñg(εg) = C� + Cc
L+Cc

R
4

C� + δC�

(
ng + qc

L − qc
R

2e

)
, (12c)

where ng = 1
2e

CI
2 V a is the usual charge offset owing to an

applied voltage (see Fig. 1), nz(εg) is the strength of the
charge offset term that depends on the dot occupation, and
δng(εg) � ñg(εg) − ng ≈ qc

L−qc
R

2e is the charge offset induced by
the continuum contributions from Eq. (8), and δ� = �L − �R.
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FIG. 2. (a) Change in effective shunting capacitance across the junction δC� as a function of gate voltage εg for a set of representative
values of �i at �/h = 45 GHz. (b) A comparison of δC� for S-QD-S junction, Eq. (12a), at low transparencies T , and the analogous value of
δCJJ

� = 3e2

8�2 EJ for an S-I-S junction [22] at given values EJ . For the S-QD-S curve, an effective EJ is defined via Eq. (17) as εg/� is varied
between 0.2 and 0.7 for �i/h = 5 GHz. In a typical S-I-S junction used for transmon with many channels, the value of EJ/h is ∼10 GHz [37].

In Fig. 2(a), the change in capacitance δC� is shown as a
function of εg ∈ [0, 0.7�] for a few representative values

�i �
√

�2 − ε2
g . As an example of the charge offsets [38]

nz(εg) and δng(εg) given by Eqs. (12b) and (12c), which arise
in asymmetric junctions, their values for εg = 0.7�, �L/h =
5 GHz and �R/h = 1 GHz are, respectively, 0.02 and −0.05.

Since the parity operator (D̂†τzD̂)2 commutes with Ĥ , the
even- and odd-parity sectors are decoupled [39]. Projecting
Eq. (11) onto the even occupancy states |0〉 and |↑↓〉 =
d†

↑d†
↓|0〉, we obtain

Ĥeven = 4ẼC (−i∂φ − ñg − nzηz )2 + ÛJ (φ), (13)

where ÛJ is the 2 × 2 Josephson matrix potential, which in-
cludes in-gap (ABS) and continuum contributions,

ÛJ (φ) = Zd

(
�

ζ

[
� cos

φ

2
ηx − δ� sin

φ

2
ηy

]
+ εgηz

)

+ Econt (φ), (14)

where Zd ≡ ζ

ζ+�
, and ηx,y,z are the Pauli matrices acting on

the even occupancy space of the dot. To the second order in
ti, qualitatively, for a doubly occupied (unoccupied) dot either
(i) a single electron (hole) can tunnel to a lead and back or
(ii) a pair of electrons (holes) can cotunnel to one of the leads.
Since electrons and holes differ in charge, the first process will
generally lead to occupancy dependent charge offset, since
∝ nzηz. The second process corresponds to change of the dot
occupancy, reflected in the off-diagonal terms of Eq. (13).
When one of the leads is disconnected from the dot, the phase
dependence of Ĥeven can be removed and the supercurrent
vanishes.

To compare to a typical S-I-S JJ we consider a low-
transparency regime in Eq. (13) where the charging energy
will be neglected. The eigenvalues of the potential term ∝ Zd

in Ĥeven yields the well-known result for the in-gap ABS
energies [34]

EA(φ) = �

ζ + �

√
�2 + ε2

gζ
2

�2

√
1 − T (εg) sin2 φ

2
, (15)

where we defined the transparency as

T (εg) ≡ 4�L�R

�2 + ε2
g

ζ 2

�2

. (16)

In the regime of small �i �
√

�2 − ε2
g and small εg, T (εg)

takes the Breit–Wigner form (cf. Ref. [24]). In the low-
transparency limit, T � 1, (reached either for �L 
 �R or
for relatively large gate voltages, εg), ABS are well gapped
allowing to obtain an effective Josephson energy

EA
J,eff ≈ �

ζ + �

�L�R√
�2 + ε2

g ζ 2

�2

. (17)

In Fig. 2(b), we use this definition to make a comparison
between δC� for an S-QD-S junction, and the analogous δCJJ

�

for an S-I-S junction at a given value of EJ [22], which shows
that the capacitance renormalization is one to two orders of
magnitude stronger for the S-QD-S junction [40].

VII. DISCUSSION AND OUTLOOK

In this paper we have developed a self-consistent approach,
reducing the underlying many-body system of a S-QD-S junc-
tion to a simple Hamiltonian of a single variable—the phase
difference across the junction. When the S-QD-S junction is
shunted by capacitance C� , the phase φ̂ is a quantum operator
and the associated charging energy EC gets renormalized as
ẼC = e2

2(C�+δC� (εg)) while the Hamiltonian becomes a 2 × 2
matrix acting on the even occupancy states of the dot. In
addition to the capacitance, the charge offset gets new QD
gate voltage dependent contributions, δng(εg), nz(εg) that arise
in an asymmetric situation, when hopping rates to the left and
to the right are different, �L �= �R.

A direct experimental probe of the capacitance renormal-
ization δC� (as well as δng and nz) would be to measure
changes in the anharmonicity α of a gatemon while sweeping
the gate voltage εg. The predicted strength of δC� and its sen-
sitive dependence on εg suggests that it could be important to
account for when designing high-fidelity quantum gates, e.g.,
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in architectures utilizing εg modulation to realize entangling
gates between qubits.

The new charge offsets ñg and nz that arise for asymmetric
tunnelings �L �= �R, and their dependence on εg and �i will
be important in the interpretation of previous [24–26] and
new experiments, e.g., Refs. [14,15], in this growing field of
quantum circuits based on super-semi junctions. The εg and
�i dependence of the new offset charges nz and δng could also
be the basis for coupling super-semi junction circuits to each
other or to a general circuit environment in new ways.

From a theoretical standpoint, it is desirable to extend our
method to the strong tunneling regime, �i ∼ �, e.g., in a
nonperturbative approach, to obtain higher-order corrections
to time-dependent continuum contributions, like S(4)

cont (that
would lead to phase-dependent corrections to the capaci-
tance). Also note that nonperturbative calculations for nz [38]

and Econt(φ) [18,41] show they can grow by an order of mag-
nitude in the strong tunneling regime. These results are also
relevant to treat multiterminal devices [14], and to explicitly
include multichannel physics that is particularly relevant for
planar super-semi junctions [42–44].
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