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Stability of skyrmion lattices and symmetries of quasi-two-dimensional chiral magnets
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Recently there has been substantial interest in realizations of skyrmions, in particular in quasi-two-dimensional
(2D) systems due to increased stability resulting from reduced dimensionality. A stable skyrmion, representing
the smallest realizable magnetic texture, could be an ideal element for ultradense magnetic memories. Here we
use the most general form of the quasi-2D free energy with Dzyaloshinskii-Moriya interactions constructed from
general symmetry considerations reflecting the underlying system. We predict that the skyrmion phase is robust
and it is present even when the system lacks the in-plane rotational symmetry. In fact, the lowered symmetry
leads to increased stability of vortex-antivortex lattices with fourfold symmetry and in-plane spirals, in some
instances even in the absence of an external magnetic field. Our results relate different hexagonal and square
cell phases to the symmetries of materials used for realizations of skyrmions. This will give clear directions for
experimental realizations of hexagonal and square cell phases, and will allow engineering of skyrmions with
unusual properties. We also predict striking differences in gyrodynamics induced by spin currents for isolated
skyrmions and for crystals where spin currents can be induced by charge carriers or by thermal magnons. We
find that under certain conditions, isolated skyrmions can move along the current without a side motion which
can have implications for realizations of magnetic memories.
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I. INTRODUCTION

Skyrmions are topological structures corresponding to
highly stable particlelike excitations. Although skyrmions
were first invented as a model for baryons [1], it has been found
that their analogs can be realized in condensed-matter systems
such as chiral magnets. Existence of magnetic skyrmion
lattices has been predicted theoretically [2] and confirmed
experimentally [3]. Magnetic skyrmions in chiral magnets,
which are the main subject of interest in this paper, have
received a lot of interest recently [3–29].

One of the most attractive features of skyrmions is their dy-
namics [27]. For domain walls in ferromagnets, the threshold
current density for current-driven motion is ∼109–1012 A m−2,
whereas for skyrmions this threshold is ∼105 − 106 A m−2 in
the slow-speed regime [30], which may lead to development
of low-power and ultradense magnetic memories [31,32].
Another attractive feature of skyrmions is the robustness of
their motion: a shape deformation and a Magnus-like force in
their dynamics allow skyrmions to avoid impurities and lead to
a very robust current-velocity relation [25]. On the other hand,
in magnetic insulators skyrmions can be driven by magnon
currents induced by temperature gradients [15,16,23,33,34].
The interlocking of the local magnetization direction and the
spin of the conduction electrons in chiral magnets can lead
to various transport phenomena such as the topological Hall
effect [35–37] and non-Fermi liquid behavior [38–40].

In chiral magnets such as MnSi, FeGe, and Cu2OSeO3 the
microscopic spin-orbit coupling (SOC) breaks the inversion
symmetry. This chiral interaction prefers twisted magnetic
structures rather than uniform magnetization, and eventually
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can lead to creation of spirals and skyrmions. The SOC man-
ifests itself as the Dzyaloshinskii-Moriya (DM) interaction
in the free energy [27,41–43]. Symmetries of these magnets
determine the nature of the DM interaction and magnetic
textures that form within the magnet. For example, broken bulk
inversion in noncentrosymmetric materials results in a highly
symmetric DM interaction and vortexlike skyrmions. The
stability of such skyrmions increases for thin film structures
[44,45], hinting that studies of two-dimensional (2D) systems
should be of particular importance. In addition, inversion is
naturally broken in 2D systems interfacing between different
materials. Recent examples of such systems include magnetic
monolayers [46,47] as well as magnetic thin films [48,49]
deposited on nonmagnetic metals with strong SOC. Magnetic
systems at oxide interfaces [50,51] also reveal large SOC
and DM interactions—ingredients that result in formation of
skyrmions [52]. A magnetically doped thin layer on a surface
of a topological insulator could be yet another promising
system for realizations of magnetic systems with strong DM
interactions [53,54].

In this paper we study the effect of the structural and bulk
asymmetries on the skyrmion (SkX) and square cell (SC)
(vortex-antivortex) crystals. Taking the most general form of
the free energy with DM interactions, we classify 2D chiral
magnets. We discuss possible realizations via appropriate
structural asymmetry where microscopically this leads to the
appearance of SOC, e.g., of Rashba and/or Dresselhaus type.
We calculate the phase diagram for different configurations
of DM interactions and find that SkX and SC phases are
robust and are present even when the system is lacking the
in-plane rotational symmetry—the case not considered in
previous studies [18,19]. Magnetization dynamics simulations
reveal that skyrmions and vortices flexibly deform and adapt to
lowered symmetries, resulting in configurations with unusual
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shapes. However, we also find that the SkX region of the
phase diagram gradually shrinks as the asymmetries become
stronger. On the other hand, the lowered symmetry leads to
increased stability of the vortex-antivortex SC lattice with
fourfold symmetry and the in-plane spiral, in some instances
even in the absence of an external magnetic field. In chiral
magnets with only reflection symmetry, we find an extremely
stable in-plane spiral phase.

We also address the spin-current-induced dynamics of
isolated skyrmions and skyrmion crystals which is of interest
due to potential applications of skyrmions in magnetic memory
devices [31,32]. Using Thiele’s approach, we obtain a general
velocity-current relation for skyrmions. Our results show
that dissipative corrections can influence the direction of the
transverse motion of isolated skyrmions, leading to strikingly
different results for isolated skyrmions and skyrmion lattices.
Our results apply to spin currents induced by charge carriers
as well as to spin currents induced by magnon flows. The latter
case is addressed in more detail in Appendix D where we derive
the Landau-Lifshitz-Gilbert (LLG) equation with magnonic
torques starting from the stochastic LLG equation. Finally, in
Appendix B we also show how DM interactions can arise from
spin-orbit interactions in microscopic models corresponding
to magnets with both localized (relevant to oxide interfaces
[50,51]) and itinerant (relevant to thin magnetic films [48,49])
spins.

II. MODEL

Our system of interest is a 2D chiral magnet with crystalline
anisotropies and in the presence of an external magnetic
field. The continuum free energy of such system contains the
chiral term known as Dzyaloshinskii-Moriya (DM) interaction
[41–43] which is responsible for broken inversion symmetry.
Its origins can be traced back to relativistic spin-orbit coupling
(SOC) [30,55,56] which provides a link between structural and
magnetic chiralities in the system (see Appendix A for further
discussion). We phenomenologically introduce the continuum
free energy density of the 2D chiral magnet as

F0 =
∑

μ=x,y

J

2
(∂μn)2 + (D̂eμ) · (n × ∂μn), (1)

where n is a unit vector along local spin density, eμ is a
unit vector along the μ axis in the positive direction, J > 0
is the exchange interaction constant, and D̂ is a rank-2
tensor describing the DM interaction whose form depends
on the structural and bulk symmetries of the system. Note
that asymmetric spin-orbit interactions can be introduced in a
similar way for semiconductor quantum wells [57].

For convenience, we work with dimensionless free energy
density obtained by the transformation x → x/(J/D), y →
y/(J/D), where D = ||D̂|| > 0 is the overall strength of the
DM interaction and J/D is the typical length scale of magnetic
structures such as skyrmions and spirals [58]. Expressed using
the new units of length, the free energy density becomes

F0 =
∑

μ=x,y

1

2
(∂μn)2 + (D̂eμ/D) · (n × ∂μn) (2)

in units of J . The following discussions in this paper are based
on this free energy density with additional Zeeman energy

H · n due to the external magnetic field and uniaxial anisotropy
energy Asn

2
z . Expressed in the new units, the total free energy

density is given by

F = F0 + HJ

D2
nz + AsJ

D2
n2

z, (3)

where F0 is given by Eq. (2), H = gμBHa , Ha is the strength
of the applied external magnetic field along the z axis, g > 0
is the g factor, μB is the Bohr magneton, and As is the strength
of the anisotropy. Adding moderate strength anisotropy that
is not of easy-plane/easy-axis type in Eq. (3) does not change
our results qualitatively.

We now investigate the effects of broken symmetries in a
chiral magnet due to structural asymmetries, which manifest
themselves in the form of D̂ tensor. To this end, let us discuss
the correspondence between the structural asymmetries in a
system and the form of the free energy density given by Eq. (3).
We first note that in the case of a 2D magnet given that ∂z = 0
[cf. Eq. (2)] the rightmost column of D̂ is unimportant in
the sense that it does not contribute to the free energy. The
symmetries of the DM magnet can be classified based on the
DM tensor D̂, which can be written as a sum of a symmetric
and an antisymmetric tensor as D̂ = D̂sym + Dasym×. The
off-diagonal tensor components [D̂]zx and [D̂]zy can come
from both symmetric and antisymmetric parts of D̂, however
we can assume that they are due to the antisymmetric part
without losing any generality in our classification. Thus
assuming [D̂sym]zx = [D̂sym]zy = 0, the 2 × 2 upper-left block
of D̂sym can be diagonalized and expressed as D01 + D3λ̂3

[here λ̂3 = diag(1, − 1,0) and 1 = diag(1,1,0)] by an in-plane
O(2) operation (rotation and/or reflection) around the z axis.
Since [D̂]zz does not enter into the free energy, this means D̂sym

can be specified using two independent parameters (D0,D3).
The antisymmetric part, however, requires the full set of three
parameters Dasym = (Dx,Dy,Dz).

Based on this decomposition, symmetries of a 2D DM
magnet can be classified into six symmetry classes [59]:

(1) Rashba SOC: D̂ = −Dz× = −DĴz with in-plane
O(2) symmetry [throughout this paper, Ĵμ denote the gen-
erators of SO(3), explicitly given in Eq. (A3)].

(2) Dresselhaus SOC: D̂ = −Dλ̂1 [λ̂1 is given in Eq. (4)
with D2d symmetry] [60].

(3) In-plane SO(2) symmetry: D̂ = −D01 resulting in
the DM interaction term −Dn · (∇ × n) which could be of
relevance, e.g., for MnSi [5,43]. This case could also include a
Rashba contribution D̂ = −D01 − DzĴz without affecting the
symmetry class.

(4) Combination of Rashba and Dresselhaus SOC, found
in noncentrosymmetric systems: D̂ = −DRĴz − DDλ̂1 such

that D =
√

D2
R + D2

D , corresponding to an interface with C2v

symmetry (C2v symmetry is described in Fig. 1).
(5) C2 symmetry: D̂ = −D01 − D1λ̂1 − DzĴz.
(6) Reflection symmetry: D̂ = −DnT ×, where nT is a

tilted unit vector making a nonzero angle with the z axis. For
such a system, the plane of reflection is along the in-plane
component of nT . This case could also include a contribution
from the Dresselhaus term when the tilting is along one of the
mirror planes of C2v symmetry.
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FIG. 1. Nontrivial symmetry operations of the point group C2v .
σ (yz) [σ (xz)] is a reflection through the yz (xz) plane and C2 is a π

rotation around the z axis.

Let us turn to the properties of the free energy under
global transformations of magnetization. The free energy
density of the DM magnet given by Eq. (3) does not change
under the global transformation n → R̂zn, D̂ → R̂zD̂, where
R̂z ∈ O(2) is a global rotation around/reflection through the z

axis (note that this is not a similarity transformation). It follows
that the cases D̂ = −Dz× and D̂ = −D1 (or their linear
combinations) can be mapped onto each other and lead to the
same phase diagram [61] where the corresponding mapping
is given in Figs. 2(a) and 2(d). These two cases have been
studied in [18] and [5,19], respectively. A global magnetization
rotation changes the helicity of the skyrmions by the angle
of rotation, whereas a reflection changes the sign of their
topological charge (for examples of the equivalent skyrmion
configurations and the corresponding DM interactions see
Fig. 2). Clearly the overall sign of the DM term is unimportant
in the sense that it does not affect the phase diagram. Another
example is given by the equivalence between the DM tensors
D̂ = −DRĴz − DDλ̂1 and D̂ = −DR1 − DDλ̂3, which are
related by a global −π/2 rotation of magnetization around
the z axis. We can also relate the free energies of systems
with Dresselhaus SOC and the Rashba SOC [corresponding
skyrmions are shown in Figs. 2(e) and 2(a), respectively] using
a reflection along the line x = y:

λ̂3 = R̂x=y Ĵz with R̂x=y = λ̂1 =
⎛
⎝0 1 0

1 0 0
0 0 0

⎞
⎠. (4)

Here we dropped the [R̂x=y]zz component of the reflection
matrix since it does not play any role in this context. Owing
to the transformation rules of the free energy density given
by Eq. (3), phase diagrams corresponding to pure Rashba
and Dresselhaus SOC are identical. Note that Rashba and
Dresselhaus skyrmions will have opposite topological charge.

We finally note that since the rightmost column of the DM
tensor D̂ does not affect the free energy, whether [D̂]zx and
[D̂]zy belong to the antisymmetric part of the tensor or not
does not affect the phase diagram either.

Thus there are only three distinct symmetry classes we
need to consider: the Rashba case, the Rashba combined with
Dresselhaus case, and the Rashba with tilting case, i.e., D̂ =
−DnT ×. We remark that the equivalence relations we just
described are global transformations relating the free energies
of two distinct systems with different DM tensors, whereas

Q = 1

(a) γ = 0 (b) γ = π
2

(c) γ = π (d) γ = −π
2

Q = −1

(e) γ = 0 (f) γ = π
2

(g) γ = π (h) γ = −π
2

FIG. 2. Spin density configuration of skyrmions corresponding
to different SOC. The length and direction of the arrows represent the
in-plane component of n, and the color indicates nz. At the skyrmion
center, nz is aligned with the external magnetic field H = H ez,
whereas in the outer region of skyrmion nz is antialigned with
H . The spin configuration nĴz

shown in (a) represents a skyrmion
with topological charge Q = 1 and helicity γ = 0, which occurs for
Rashba SOC given by D̂ = −DĴz. Other skyrmions (antiskyrmions)
with topological charge Q = 1 (Q = −1) and an arbitrary helicity
γ can be obtained via the global transformation R̂z(γ )nĴz

; they
occur naturally in a system with DM tensor D̂ = −DR̂z(γ )Ĵz

[D̂ = DR̂z(γ )λ̂3Ĵz], where R̂z(γ ) = exp(γ Ĵz) is a rotation around
the z axis by an angle γ and λ̂3 = diag(1, −1,0) is an inversion
matrix.

the symmetry classes we enumerated above correspond to
the real-space symmetries of the free energy of the system
corresponding to the specified DM tensor.

III. PHASE DIAGRAMS

In this section we present our results for the high-
and low-symmetry cases of the spin-orbit interaction. We
used Monte Carlo (MC) simulated annealing with jackknife
resampling to obtain the equilibrium states. To construct
the phase diagrams (As,H ), one can compare the energy
of the states obtained from low-temperature (kBT = 0.01J )
annealing against the zero temperature ground-state energy of
the uniform ferromagnetic state [19]. However, all the phase
transitions we study are of the first order (except for the one
between the collinear aligned and tilted FM phases, which is
a second order transition). As the first order phase transitions
exhibit hysteresis, the annealing does not give clear results near
the phase boundaries. Instead, the configuration gets stuck in
metastable states, limiting the accuracy in finding the critical
values of As and H , and allowing only a semiquantitative
analysis of the phase diagram [19]. On the other hand, the
advantage of annealing over the variational approach [18] is
that ansatz-based minimization may miss certain phases such
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as the square-lattice phase reported in [19]. Our approach
here is twofold. We first used MC to determine the phases
and spin density configurations, and to obtain a sketch of the
phase diagram. Using this information as the starting point, we
solved the LLG equation numerically to determine the phase
boundaries accurately at zero temperature.

The spin density configuration n(r i) obtained from MC
simulations has been analyzed by inspecting the Bragg peaks
in the momentum space

n(k) =
∫

dd r
(2π )d

e−ik·r n(r), (5)

as well as the topological charge density, which is given by

χ (r) = 1

4π
[∂xn(r) × ∂yn(r)] · n(r), (6)

where r and k are (in-plane for d = 2) position and momentum
vectors and d = 2 for a 2D system.

Annealing results reveal the presence of four different
phases: ferromagnetic (FM, aligned with nz = −1 and tilted
with nz > −1), triangular skyrmion lattice (or skyrmion crys-
tal, SkX), square cell (SC) lattice of vortices-antivortices (with
the topological charge that is not an integer or a half-integer),
and spiral (SP, denoting both coplanar and in-plane spirals)
phases.

Additional phases such as the cone phase may occur in a 3D
chiral ferromagnet with the width ∼J/D or thicker [24,62].
The presence of quartic term in the free energy near the Curie
temperature Tc is also known to influence the phase diagram
[14].

In order to determine the phase boundaries in a more precise
manner, we numerically solved the overdamped LLG equation

s(1 + αn×)ṅ = n × Heff, (7)

in order to relax the system towards the local minimum. Here
α is the Gilbert damping parameter, s is the local spin density,
n is a unit vector along the spin density, and Heff = −δnF

is the effective magnetic field and F is the free energy. We
used the LLG equation to relax the system into a stable state,
starting from SC, SkX, and SP configurations that are based
on the results from MC:

nSkX = C[nq( Q0) + nq( Q2π/3) + nq( Q−2π/3)],

nSC = C[nq( Q0) + nq( Qπ/2)], (8)

nSP = 1√
2

[eu cos(q · r) + ev sin(q · r)],

where

nq(q) = cos(q · r)ez + 1

2
sin(q · r)ez ×

(
D̂

D
q
)

,

Qφ = (cos φ, sin φ,0)T ,
(9)

r = (x,y,0)T ,

eu · ev = 0,

and C is a (position-dependent) normalization factor ensuring
that |n| = 1. Initial values for the unit vectors eu and ev were
determined by minimization, and the cell size was treated and
optimized as a dynamical variable (see Appendix E for details).

We determined the phase at each (As,H ) point by comparing
the average energy densities for SkX, SC, and SP states, and
the analytical energy density for the FM phase.

A. Rashba SOC

Here we study the case of the DM tensor given by
D̂ = −DĴz. The cases D̂ = −DĴz and D̂ = −D1 (which
are equivalent to each other up to a global transformation,
as discussed in the previous section) have been studied in
Refs. [18,19]. Our zero-temperature phase diagram shown
in Fig. 3 mostly agrees with [18], except for the addi-
tional SC region which was missing in their analysis. SkX
phase shows hedgehoglike skyrmions with well-localized
topological charge Q = 1 (Fig. 4). The same phase diagram
also applies to the pure Dresselhaus case, D̂ = −Dλ̂1, but
skyrmions have Q = −1 due to the reflection involved in the
equivalence transformation, as can be seen from Eq. (4). As
the easy-plane anisotropy is increased the topological charge
of skyrmions gradually splits, forming the precursor to the
vortex-antivortex pair lattice shown in Fig. 5, while the total
charge within a single unit cell remains Q = 1. As pointed out
in [19] the core radius of skyrmions in SkX phase becomes
larger and skyrmions start to overlap causing the formation
of vortices/antivortices during this process. When the relative
size of antivortices (with respect to vortices) reaches a critical
value, the square lattice becomes the energetically more
favorable packing for the vortex-antivortex lattice and a first
order phase transition occurs from SkX phase to SC phase.

−1.5

SkX

SP SC

FM

−1.0 −0.5 0.0 0.5 1.0 1.5
0.0

0.5

1.0

1.5

2.0

AsJ/D2

HJ/D2

Easy-axis Easy-plane

FIG. 3. Zero temperature phase diagram for the pure Rashba or
pure Dresselhaus type symmetry is obtained by numerically solving
the LLG equation. The same phase diagram also applies to the case
of SO(2) symmetric DM tensor D̂ = −D1. The gray line separates
the aligned and the tilted regions of the FM phase. This phase is taken
over by SkX, SP, and SC phases in the regions defined by the bold
lines.
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FIG. 4. Normalized spin density n and topological charge density
χ in SkX phase for the Rashba SOC. The size and direction of
the arrows represent the in-plane component of n and the color
represents nz. AsJ/D2 = 0 and HJ/D2 = 0.7 (top), AsJ/D2 = 0.8
and HJ/D2 = 0.7 (bottom). As the strength of the easy-plane
anisotropy is increased, localized skyrmions undergo a continuous
charge splitting. When the relative size of the antivortices reach a
critical value, square packing becomes energetically favorable and a
first order phase transition occurs into SC phase.

B. Rashba + Dresselhaus SOC

The mixture of Rashba and Dresselhaus SOC [57,64,65]
with C2v symmetry has been studied in [65] in the absence of
anisotropies, with the conclusion that SkX phase cannot exist
when both SOC terms are present. Our analysis here shows
that SkX phase can be stabilized by the uniaxial anisotropy.
Figure 6 shows the phase diagram for D̂ = −DRĴz − DDλ̂1

with DR/DD = 5 (DR,DD > 0). The DM tensor of mostly
of Rashba type with an additional small symmetry-breaking
Dresselhaus type term results in skyrmions with the topolog-
ical charge Q = 1. In the opposite situation of DD/DR = 5,
skyrmions converge to topologically different Dresselhaus
type skyrmions with Q = −1 charge. We observe that SkX
region shrinks while SP and SC regions expand. The C2v

symmetry allows deformations along the axes of reflection
(x and y axes in this case), but unlike the SP and SC
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FIG. 5. Normalized spin density and topological charge density
at AsJ/D2 = 1.5 and HJ/D2 = 1.4 (SC phase) for Rashba SOC.
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FIG. 6. Zero temperature phase diagram for the Rashba +
Dresselhaus SOC with C2v symmetry (D̂ = −DRĴz − DDλ̂1 with
DR/DD = 5). SkX phase is only present in the easy-plane region
(AsJ/D2 > 0) of the phase diagram. The gray line separates the
aligned and the tilted regions of the FM phase [63], whereas SkX and
SP phases are not affected by this line.

configurations, the sixfold symmetry of SkX is not compatible
with such deformations. Elongation of skyrmions along the
axes of symmetry is evident in Figs. 7 and 8.

C. Rashba SOC with tilting

Finally, we discuss the case in which the DM tensor is anti-
symmetric and corresponds to a vector that is making a small
tilting angle with the z axis: D̂ = −D(0, sin θT , cos θT )T × and
the tilting angle is chosen to be θT = tan−1(0.1) ≈ 0.1 or 5.7◦.
Such a system has reflection symmetry along a single mirror
plane (which is the yz plane for this choice of parameters). We
find that the SP region expands greatly while the SkX region
slightly shrinks and the SC region is completely replaced by
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FIG. 7. Normalized spin density and topological charge density
at AsJ/D2 = 0.4,HJ/D2 = 1.2 (SkX phase) for the Rashba +
Dresselhaus SOC with C2v symmetry. This plot shows the initial
stage of charge splitting of skyrmions elongated along the mirror
planes (xz and yz planes).
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FIG. 8. Normalized spin density and topological charge density
at AsJ/D2 = 0.6,HJ/D2 = 1.3 (SC phase) for the Rashba +
Dresselhaus SOC with C2v symmetry. The vortices and antivortices
are noticeably elongated.

SP, as can seen in Fig. 9. It turns out that the SP phase also
takes over the tilted FM region (in which the spin density
is nz = −H/2As) due to the fact that such form of DM
interaction favors in-plane spirals (Fig. 10) and this allows
exchange and DM interactions to lower the average energy
density from FFM/A = Asn

2
z + Hnz (note that the in-plane

component of the spin density does not contribute at all) where
FFM is the free energy and A is the area of the system. The
core of resulting skyrmions is shifted along the y axis as can
be seen in Fig. 11. There is also a slight elongation along the
y axis (around 2% for the parameters used in the figures).

IV. DYNAMICS OF SKYRMIONS INDUCED
BY SPIN CURRENTS

Here we study the dynamics of skyrmions in response to
spin currents. Spin currents naturally arise in a conducting
ferromagnet in the presence of charge currents. Spin currents
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FIG. 9. Zero temperature phase diagram for the SOC with
reflection symmetry [D̂ = −D(0, sin θT , cos θT )T × with θT =
tan−1(0.1) ≈ 5.7◦] which shows a SP phase with enhanced stability.
The gray line separates the aligned and the tilted regions of the FM
phase.
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0

FIG. 10. Normalized spin density at AsJ/D2 = 1.5,HJ/D2 = 1
(SP phase) for reflection symmetry, showing a mostly in plane spiral
configuration. When the easy-plane anisotropy AsJ/D2 is increased,
spirals become almost completely in-plane.

can also arise in a ferromagnetic insulator in a form of magnon
current as a response to a temperature gradient as we show in
Appendix D by deriving the LLG equation from the stochastic
LLG equation. In both cases, we can apply the following LLG
equation:

s(1 + αns×)ṅs = ns × Heff − (1 + βns×)( j s · D)ns ,

(10)

where s is the local spin density, β is the dissipative correction
to the magnonic torque, j s is the effective spin current
induced either by charge carriers or by magnon currents, D =
(Dx,Dy,Dz) is the chiral derivative [55,56], and ns represents
the spin density whose dynamics is determined by the external
magnetic field, magnetic anisotropies, and spin currents. The
form of the chiral derivative is determined by symmetries of
the system. In the most simple case it can be determined by
DM interactions, i.e.,Dμ = ∂μ + (D̂eμ/J )× (see Appendix D
for a detailed discussion for the case of magnon currents
and [66] for charge currents). However, in the most general
settings the tensor involved in the chiral derivative can be
renormalized, e.g., due to various scattering processes.

For describing the motion of skyrmions, we use Thiele’s
approach [25,29–31,67–69] in which the motion of magnetic
textures is constrained to a subspace described by the general-
ized (collective) coordinates qi in the form ns = ns[r − q(t)].
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FIG. 11. Normalized spin density and topological charge density
at AsJ/D2 = 1.3,HJ/D2 = 1.5 (SkX phase) for reflection symme-
try. The core of skyrmions is shifted (from the unit cell center which
is at the origin) along the axis of reflection.
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Under this assumption, the magnetic structure drifts as a
whole while maintaining its internal structure: ṅs becomes
−∑

μ q̇μ∂qμ
ns and the equations of motion for qμ can be

found by applying the operator
∫

cell d
2r(∂qμ

ns) · ns× to the
LLG equation (10). We obtain the following equation for the
generalized coordinate:

s(Ĝ + αη̂)v − (Ĝ1 + βη̂1) j s = 0, (11)

where v = q̇ denotes the speed of the skyrmion and

[Ĝ]μν = 1

4π

∫
d2r(∂μns × ∂νns) · ns =

∫
d2rχ (r)εμνz,

[Ĝ1]μν = 1

4π

∫
d2r(∂μns × Dνns) · ns ,

(12)

[η̂]μν = 1

4π

∫
d2r(∂μns · ∂νns),

[η̂1]μν = 1

4π

∫
d2r(∂μns · Dνns),

with μ,ν ∈ {x,y} and the integrations are over a single unit
cell. The antisymmetric gyrotensor Ĝ can be written as −Qz×,
and we have Ĝ = Ĝ1. The damping dyadic tensors η̂ and η̂1
account for the effects of dissipation.

For the rotationally symmetric case a skyrmion of radius R

will result in η̂ = η1 and η̂1 = η11, with

η = π

∫ R

0
dr

(
sin2 nθ

r
+ r(∂rnθ )2

)
,

(13)

η1 = η + π

∫ R

0
dr(sin nθ cos nθ + r∂rnθ ),

where nθ and nφ are the spherical coordinates of n, leading to
the equation of motion(

ηαsv − η1β j s
) − Qz × (sv − j s) = 0. (14)

For the motion of skyrmions in response to a time-independent
spin current along x direction ( j s = j sex), this equation yields

vx = j s Q2 + αβηη1

s(Q2 + α2η2)
, vy = j sQ

βη1 − αη

s(Q2 + α2η2)
, (15)

that is, skyrmions will move along the spin current with an
additional side motion, resulting in a Hall-like motion with
Hall angle θH = tan−1(vy/vx) (see Fig. 12).

In cases lacking the rotational symmetry, the dissipation
tensor can be diagonalized as η̂′ = R̂zη̂R̂T

z = diag(η′
xx,η

′
yy)

by a proper rotation R̂z around the z axis that aligns the
basis vectors with the preferred directions due to the broken
symmetry. R̂z also diagonalizes η′

1. Such a transformation does
not affect Ĝ since [R̂z,Ĵz] = 0, thus the equation of motion in
the new coordinate system becomes

η̂′αsv′ − η̂′
1β j s ′ − Qz × (sv′ − j s ′) = 0, (16)

or

Qz × (sv′ − j s ′) −
(

η′
xx 0
0 η′

yy

)
αsv′

+
(

η1
′
xx 0

0 η′
1yy

)
β j s ′ = 0, (17)

where j s ′ = R̂z j s and v′ = R̂zv.

FIG. 12. Motion of Q = 1 skyrmions due to spin current along
the x axis, simulated by the LLG equation with the torque term,
Eq. (10). Skyrmions move along the spin current (e.g., toward
the hotter region for the case of magnon-mediated torques) (+x

direction) with an additional side motion (−y direction). Skyrmions
get deformed along the direction of motion.

In SkX phase, interskyrmion interactions force the inter-
skyrmion distance to a particular value. In the case when
chiral derivative is given by Dμ = ∂μ + [D̂eμ/J ]× this leads
to η̂′

1 = 0 and θH = −Qαη (see Appendix E). However, this
exact cancellation does not happen for isolated skyrmions
in general and when the chiral derivative entering the LLG
equation (10) is renormalized. Nevertheless, we observe that
the renormalization of the dissipative tensor in Eq. (12) has to
be taken into account, especially for skyrmion lattices. Such
renormalization was not considered in the previous studies
[19,23,25,27].

Isolated skyrmions in a chiral magnet can be realized
by increasing the magnetic field in the SkX phase or by
injection of spin currents. Such isolated skyrmions will exist as
topologically protected defects [21,45,70], whose Hall motion
is affected by the β-term as well [see, e.g., Eq. (14)]. On the
other hand, for isolated skyrmions the interskyrmion distances
become much larger compared to the skyrmion core size, for
which we estimate η̂1 ≈ η̂. In the particular case of α = β

(this case is realized for magnon-mediated torques for d = 2,
see Appendix D), isolated skyrmions will move along the
spin current without a side motion [see Eq. (15)], similar to
antiferromagnetic skyrmions [26]. This can have implications
for realizations of magnetic memories relying on skyrmions
for information encoding.

While the form of the SOC completely determines the
helicity γ and topological charge Q of the skyrmions in SkX
phase, in principle it is possible to create metastable skyrmions
with different helicity γ ′ and charge Q′. The dynamics of
such skyrmions will be different in general: n in Eq. (12) will
be replaced by R̂′n, where R̂′ = R̂z(γ ′ − γ )(−λ3)(1−QQ′)/2,
which in turn means Ĝ → det(R̂′)Ĝ, Ĝ1 → det(R̂′)Ĝ1,
η → η, and η1 → R̂′T (η1 − η) + η.

Note that we consistently keep only the first order terms in
SOC strength and assume a smooth magnetic texture. In sharp
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UTKAN GÜNGÖRDÜ et al. PHYSICAL REVIEW B 93, 064428 (2016)

textures, there could be additional damping terms of the order
of (D/J )2 whose overall effect is to renormalize the elements
of η̂ [37,71]. Similar corrections can occur when the magnon
wavelength is comparable to the texture size [72].

V. CONCLUSIONS

In this work we have studied SkX and SC crystals at
temperatures that are much lower than the Curie temperature.
Similar studies of magnetic skyrmions so far have been
limited to systems with high symmetry. A previous study
concluded that SkX phase does not exist in a system with both
Rashba and Dresselhaus SOC, but uniaxial anisotropy was not
present in their model [65]. As we have shown, SkX phase is
present even in systems with reduced symmetries; however, the
skyrmions become asymmetric. In fact, we have established
a clear connection between the symmetries of skyrmions
and the corresponding DM interactions (see, e.g., Fig. 2).
In addition, we have found that reduced symmetries result
in enhanced stability of vortex-antivortex lattices and spirals,
even in the absence of an external magnetic field. This behavior
has also been reported in [17] for MnSi (D̂ = 1). In our
Monte Carlo simulations, we have observed anisotropy-driven,
first order phase transitions between FM, SkX, SC, and SP
phases.

We have also studied the dynamics of skyrmions and
SkX (SC) lattices induced by spin currents where the spin
current is induced by charge carriers or by magnons. We
have found striking differences between the motion of lattices
and isolated skyrmions. This difference arises due to a
renormalization of the dissipative dynamics of SkX and SC
lattices and can be expressed via the chiral derivative. On the
other hand, this renormalization is not important for isolated
skyrmions. As a consequence, our theory indicates that under
certain conditions, isolated skyrmions can move along the
current without a side motion, similar to antiferromagnetic
skyrmions. This can have implications for realizations of
magnetic memories relying on skyrmions for information
encoding.

Our results apply to monolayers as well as quasi-2D layers
thinner than the pitch of out-of-plane spirals with the length
scale J/D [6,13,24,52,62].

To conclude, our results relate different SkX and SC
phases to the symmetries of materials used for realizations
of skyrmions. This will give clear directions for experimental
realizations of SkX and SC phases, and will allow engineering
of skyrmions with unusual properties.
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APPENDIX A: DZYALOSHINSKII-MORIYA
INTERACTION IN ITINERANT FERROMAGNETS

The discussion in this Appendix is relevant to itinerant
ferromagnets with DM interactions, e.g., thin magnetic films
realized experimentally in Refs. [48,49]. The effective free
energy of a quasi-two-dimensional (2D) chiral magnet can
be obtained starting from the 2D Rashba Hamiltonian with a
general spin-orbit interaction term

Ĥ = p2

2m
+ (α̂ p) · σ . (A1)

Here the tensor α̂ describes SOC, p is the in-plane 2D
electron momentum, σ = (σx,σy,σz). Note that SOC can
be related to DM interactions by relation α̂ = �/(2mJ )D̂.
The Coulomb interactions resulting in the magnetic state
are spin independent. Thus, we can eliminate the spin-orbit
interaction using a local SU(2) gauge transformation [55]
Û = exp(−iϕu · σ/2) to obtain

Û †Ĥ Û = p2

2m
+ O(ϕ2), (A2)

where u = D̂r/|D̂r| is a unit vector along the axis of rotation,
r is the in-plane position vector, and the angle ϕ = �|D̂r|/J
is proportional to the strength of the spin-orbit interaction. In
the remainder of this Appendix, we will neglect higher order
terms in ϕ given that SOC is a relativistic effect.

The free energy density corresponding to the system in
the rotated frame is given by F0 = ∑

μ=x,y J (∂μn̄)2/2, where
J is the strength of the exchange interaction of the magnetic
state with the order parameter n̄ originating from the Coulomb
interactions. The original and rotated frames are related to
each other by an SO(3) rotation: n = R̂n̄, where R̂ = exp(ϕu ·
J) = exp(φu×), J = (Ĵx,Ĵy,Ĵz) and

Ĵx =
⎛
⎝0 0 0

0 0 −1
0 1 0

⎞
⎠, Ĵy =

⎛
⎝ 0 0 1

0 0 0
−1 0 0

⎞
⎠,

Ĵz =
⎛
⎝0 −1 0

1 0 0
0 0 0

⎞
⎠ (A3)

are the generators of the fundamental representation of SO(3).
(Û and R̂ represent the same rotation in spin and real space,
respectively.) Since the gauge transformation is not a global
one, we obtain a nontrivial covariant (often called chiral in this
context) derivative Dμ,

Dμ = ∂μ + R̂∂μR̂T = ∂μ + (D̂eμ/J ) ×, (A4)

which replaces the spatial derivative ∂μ and captures the linear
effects of SOC. The continuous free energy density in the
original frame is then found to be

F0 =
∑

μ=x,y

J

2
(Dμn)2 ≈

∑
μ=x,y

J

2
(∂μn)2 + (D̂eμ) · (n × ∂μn).

(A5)

APPENDIX B: TIGHT-BINDING MICROSCOPIC MODEL

In this Appendix we derive the free energy based on a
tight-binding microscopic model. Such microscopic model
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can be relevant to realizations of magnetic systems at oxide
interfaces [50,51]. We describe our system by the tight-binding
Anderson-Hasegawa Hamiltonian Ĥ = Ĥt + ĤSO + Ĥint on a
square lattice [52]:

Ĥt = −t
∑

〈i,j〉,α
c
†
iαcjα + H.c.,

ĤSO = −iλSO

∑
〈i,j〉,αβ

c
†
iαcjβDij · σ αβ + H.c., (B1)

Ĥint = J
∑
ij

Si · Sj − 2JH

∑
i

si · Si ,

where Ĥt is the nearest-neighbor hopping term, ĤSO is the
spin-orbit coupling, Ĥint is the interaction Hamiltonian, J is
superexchange energy, JH is Hund’s coupling energy, c†iα (ciα)
creates (annihilates) an itinerant fermion with spin α at lattice
site i, Dij = D̂eij /D, σ = (σx,σy,σz), eij is a unit vector from
site i to j ,

∑
〈i,j〉 denotes summation over nearest neighbors,

si = ∑
αβ c

†
iασ αβciβ/2, and Si denotes lattice-localized spins.

The SOC coupling can be gauged away by a rotation in the
spin space, which rotates the first site by an angle φij defined
through tan φij = (|D̂eij |/D)(λSO/t) and the second site by
−φij around the axis uij = D̂eij /|D̂eij |:

c̄iα = [Û ij ]†αβciα, c̄jβ = [Û ij ]αβcjβ, Ûij = eiφij uij ·σ/2.

(B2)

In terms of the rotated operators, H becomes

Ĥ = −t̄
∑

〈i,j〉,α
c̄
†
iαc̄jα +

∑
〈i,j〉

J S̄i · S̄j − 2JH s̄i · S̄j δij

= −t̄
∑

〈i,j〉,α
c̄
†
iαc̄jα +

∑
〈i,j〉

J
(
R̂T

ij Si

) · (R̂ij Sj )

− 2JH

(
R̂T

ij si

) · (R̂ij Sj )δij , (B3)

where t̄ =
√

t2 + λ2
SO and R̂ij ∈ SO(3) represents the same

rotation as Ûij in the three-dimensional Euclidean space: a
rotation by −φij around the uij axis, which can be written as

R̂ij = cos φij1 + (1 − cos φij )uij uT
ij − sin φij uij ×. (B4)

In the limit of large JH and classical spins S̄i , Hamiltonian
(B3) corresponds to effective exchange interaction between
localized spins given by [73]

−JF

∑
〈i,j〉

√
1 + S̄i · S̄j /2S2, (B5)

where S is the magnitude of the local spins, JF = Kt̄ , and
K is a constant related to the density of itinerant electrons.
Expanding the square root and using (R̂T

ij Si) · (R̂ij Sj ) = Si ·
(R̂2

ij Sj ) along with Eq. (B4) and considering nearest-neighbor
interactions, we obtain the Hamiltonian

Ĥ =
∑

i,μ=x,y

−JμSi · Si+μ − Dμuμ · (Si × Si+μ)

−Aμ
c (uμ · Si)(uμ · Si+μ), (B6)

with Jμ = −J cos 2φμ, A
μ
c = Jo(1 − cos 2φμ), and Dμ =

J sin 2φμ. Since φμ ∼ λSO/t � 1, we obtain the relation
AcJ/D2 ≈ 1/2, where Ac ≈ A

μ
c (D/|D̂eμ|)2.

The continuous free energy density corresponding to this
lattice tight-binding model is

F =
∑

μ=x,y

J

2
(∂μn)2 + (D̂eμ) · (n × ∂μn)

−Ac

[
(Dμ · n)2 − 1

2
(Dμ · ∂μn)2 − 1

2
(|Dμ|∂μn)2

]
.

(B7)

Using J/D as the new unit of length, the free energy density
can be rewritten in the dimensionless form

F0 =
∑

μ=x,y

1

2
(∂μn)2 + Dμ · (n × ∂μn) − AcJ

D2
(Dμ · n)2

+ AcJ

D2

1

2

(
D

J

)2

[(Dμ · ∂μn)2 + (|Dμ|∂μn)2] (B8)

in units of J . After adding the uniaxial anisotropy and Zeeman
energies as well as dropping the term (D/J )2 ∼ (λSO/t)2 � 1,
this free energy density shares the symmetries of the one
given by Eq. (3). They become equivalent for D̂ = −Jz or
D̂ = −1 leading to a uniaxial anisotropy with a renormal-
ized strength As → As + Ac. In the case of C2v symmetry
discussed in Sec. III, there is an additional anisotropy term
Ac2DRDD(D2

R + D2
D)−1(n2

x − n2
y) which is compatible with

C2v symmetry. For the case with only reflection symmetry, the
leading anisotropy term is Ac2θT nz(nx cos φT + ny sin φT ),
where θT and φT are spherical angles describing the tilting
vector nT ; as one would expect, the additional term respects
the reflection symmetry. We numerically found that for small
DD/DR or θT there is no significant difference in the phase
diagrams due to additional anisotropy terms.

APPENDIX C: VARIATIONAL ESTIMATE

In order to obtain an initial rough estimate for the phase
diagram, we minimize the average free energy density

F

A
= 1

A

∫
A

d2rF(n(r)) (C1)

by comparing the energies corresponding to ferromagnetic,
SkX, SC, and SP ansatzs. For each ansatz we optimize the
parameters that yield the minimal energy.

Skyrmion lattice. We assume a simple form of azimuthally
symmetric skyrmion and linearly interpolate the nθ component
of the spin density:

nSkX = (sin nθ cos nφ, sin nθ sin nφ, cos nθ )T , (C2)

with nθ = −πr/R and nφ = Qφ + γ . The optimal values of
R (skyrmion size), Q ∈ {−1,1} (topological charge) and γ

(helicity) are found by minimization. In the reduced symmetry
cases, the accuracy of this azimuthally symmetric ansatz
becomes less accurate as the asymmetry is increased. In
principle, this can be remedied by adding a constant component
to nSkX along a preferred direction.
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UTKAN GÜNGÖRDÜ et al. PHYSICAL REVIEW B 93, 064428 (2016)

Spiral. MC simulations show that depending on D̂, spirals
can be coplanar or in-plane. To capture both kinds of spirals,
we assume the ansatz

nSP = eu cos(q · r) + ev sin(q · r) (C3)

for the spiral phase with eu · ev = 0. Minimization is done
with respect to eu, ev , and q.

Ferromagnetic. There are two types of uniform ferromag-
netic phase that appear as the solution of equation:

Asn
2
z − Hnz = 0. (C4)

The first case is the aligned ferromagnetic phase with nz =
−1 with energy As + H . In the tilted ferromagnetic phase,
we have nz = −H/2As > −1 and the energy is −H 2/4As .
The resulting phase diagrams coarsely agree with the results
obtained from using LLG equation and MC.

APPENDIX D: LLG EQUATION WITH MAGNONIC
TORQUES

In this Appendix we give a derivation of the LLG equation
(10) when the spin current and torque originate from magnon
currents. The presentation here follows closely [15,16,74] and
extends the result in [75] to systems with DM interaction.

We assume that the time scale of the magnetization dynam-
ics determined by external magnetic fields, anisotropies, and
currents is slow compared to the time scale of thermal magnons
defined by the temperature. We also assume that the thermal
magnon wavelength is smaller than the typical size of the
magnetic texture, i.e., skyrmion. Magnetization dynamics of
a ferromagnet well below Curie temperature can be described
by the stochastic LLG equation

s(1 + αn×)ṅ = n × (Heff + h), (D1)

where s is the spin density, n = n(r,t) is a unit vector along
spin density, Heff = −δnF is the effective magnetic field, and
h is the random Langevin field at temperature T that satisfies
the fluctuation-dissipation theorem with the correlator

〈hi(r,t)hj (r,t)〉 = 2αsT (r)δij δ(r − r ′)δ(t − t ′). (D2)

Here α is the Gilbert damping coefficient and we assume a
uniform temperature gradient along the x axis, ∂xT = const.

We separate the spin density n into small and fast
oscillations ns with time scale 1/ωk (ωk is the magnon
frequency) on top of the slow spin density dynamics nf

whose time scale is defined by external magnetic fields,
anisotropies, and currents. These two orthogonal (that is,
nf · ns = 0) components are related to spin density by

n =
√

1 − n2
f ns + nf by definition, and |ns | = |n| = 1. We

now switch to a coordinate system where the z axis points
along ns through a local SO(3) gauge transformation R̂s =
exp(�Ĵz) exp(�Ĵy) exp(�Ĵz), where �,�, and � are Euler
angles. In what follows we set � = 0. In this coordinate
system, the spin density becomes n′ = R̂sn and the covariant
derivative is ∂ν − Âν with Âν = (∂νR̂s)R̂T

s = Aν× and Aν =
(− sin �∂ν�,∂ν�, cos �∂ν�), and ν = t,x,y,z denotes time
and space coordinates. By treating Aν as a (fictitious) vector
potential, we fix the gauge. In the new frame nf lies in the
x ′-y ′ plane which can be represented by a complex number as

nf = nx ′ + iny ′ . The LLG equation in this frame for the fast
dynamics is given by

is
[
(1 − iα)∂t − iAz

t

]
n+ =J

(
i∂μ + Az

μ − dz
μ

)2
n+ + Hn+,

(D3)

where dμ = D̂eμ/J and we assumed exchange interactions
are dominant over various anisotropy terms and the coupling
between the circular components nf and n∗

f can be ignored
[15,76]. The right-hand side of this equation can be read
as follows: the gauge fields −Aμ and D̂eμ/J , respectively,
account for aligning n′

s with the z′ axis and introducing the
DM interaction; the gauge potentials can be merged into an
overall covariant derivative D′

μ ≈ ∂μ + (−Aμ + D̂eμ/J )×,
where we kept only the first order terms in D/J , ∂μ�, and
∂μ�. Equation (D3) describes thermal magnons with spectrum
ωk = [H + J (k − k0)2 − Jk2

0]/s and magnon current jμ =
J Im(n∗

f ∂μnf ). Here k0 is the momentum shift induced by
the DM interaction and magnetic texture. Formally, Eq. (D3)
describes the motion of charged particles due to fictitious
electric and magnetic fields Eμ = n′

s · (∂t n′
s × ∂μn′

s) and Bi =
−(εijk/2)n′

s · (∂j n′
s × ∂kn′

s).
We are now in a position to calculate the force exerted by

the fast oscillations on the slow spin density dynamics. For
simplicity, we assume that the slow magnetic texture is static
since the time dependence can be taken into account later on
by Onsager reciprocity principle. The relevant terms in the
total effective field

Heff = J

(
∂2
μn + 2

D̂eμ

J
× ∂μn

)
− (H + 2Asnz)ez (D4)

are exchange and DM terms because other terms average out
due to rapid oscillations (summation over μ = x,y is implied),
thus we obtain the expression for the torque

T = 〈n × Heff〉 − 〈n〉ns × H s
eff = J ns × S

≈ J
〈
nf × ∂2

μnf

〉 + 2J 〈n × (∂μns)∂μ(ns · n)〉
+ 2J 〈nf × (dμ × ∂μnf )〉, (D5)

where we formally introduced S = −ns × T /J as the
nonequilibrium transverse accumulation of magnon spins,
〈· · · 〉 denotes averaging over the fast oscillations induced
by random fields, and H s

eff = −δns
F (〈n〉ns ,〈n〉∂μns). By

dropping oscillatory terms that average out, we obtain

S = 2〈nf (∂μns · ∂μnf )〉 − 2〈ns(∂μnf · ∂μnf )〉
+ 2〈(ns × nf )(dμ · ∂μnf )〉. (D6)

The fact that vectors S,nf ,∂μns ,∂μnf , and ns × nf are in
the x ′-y ′ plane allows us to rewrite Eq. (D6) using complex
numbers, leading to

S = −idμ〈n+∂μn−〉 − (∂μns)〈n−∂μn+〉. (D7)

S = Sx + iSy describes the components of spin accumulation
leading to dissipative and nondissipative torques and −idμ

represents dμ × ns (which also is a vector in the x ′-y ′ plane)
as a complex number. For the steady state solution, we obtain

〈n±∂μn∓〉 = ±
∫

dd−1kdω

(2π )d
〈n±(k,ω,x)∂μn∓(k′,ω′,x)〉
(2π )dδ(k − k′)δ(ω − ω′)

,

(D8)
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where d = 2,3 is the dimensionality of the magnet and

n±(k,ω,x) =
∫

dd−1ρdω

(2π )d
e∓i(ωt−ρ·k)n±(ρ,t) (D9)

is the Fourier transform with respect to time and transverse
coordinates. The δ functions in the denominator are canceled
by the stochastic field

〈h∗(k,ω,x)h(k′,ω′,x)〉
4(2π )dαskB

= T (x)δ(x − x ′)δ(ω − ω′). (D10)

Since we are interested in the linear response to the random
Langevin field h(k,ω,x), we set Az

ν = 0 in Eq. (D3) and the
stochastic LLG equation (D1) becomes the inhomogeneous
Helmholtz equation

J
(
∂2
x + κ2

)
n−(k,ω,x) = h(k,ω,x), (D11)

where κ2 = [(1 + iα)sω − H ]/J − k2 − k2
0. This equation

corresponds to Eq. (D3) with an added stochastic term, and can
be solved easily by employing Green’s function G(x − x0) =
ieiκ|x−x0|/2κ . By substituting the solution into Eq. (D8) and
employing the quantum dissipation theorem, we find

T = −(Dμns)jx(1 + iβ), (D12)

where Dμns represents Dμns as a complex number and

jx = ∂xT

T

∫
dd k

(2π )d
τ (ε)εv2

x(∂εf0), (D13)

with τ (ε) = (2αω)−1, ε(k) = (Jk2 + H )/s, vx = ∂ωk/∂kx ,
and f0 = 1/[exp(ε/kBT ) − 1] is the Bose-Einstein equilib-
rium distribution. The β term in Eq. (D12) corresponds to the
dissipative correction with β/α = (d/2)F1(x)/F0(x) ∼ d/2
with F0(x) = ∫ ∞

0 dεεd/2−1εeε+x/(eε+x − 1)2 and F1(x) =∫ ∞
0 dεεd/2−1(ε + x)eε+x/(eε+x − 1)2 evaluated at the magnon

gap x = ω0/kBT (for d > 2 and for small gaps, F1(x) =
F0(x) = ζ (d/2)/�(1 + d/2), where ζ (x) is the Riemann zeta
function, and �(x) is the Euler gamma function [77]). The
magnon current density is given by

jμ = −kB(∂μT )F0/(6π2λ�α) (D14)

for d = 3, where λ = √
�J/skBT is the thermal magnon

wavelength, and

jμ = −kB(∂μT )F0/(4π�α) (D15)

for d = 2. Using the spin-torque term given by Eq. (D12), we
obtain the LLG equation with thermomagnonic torque

s(1 + αsns×)ṅs = ns × H s
eff − (1 + βns×)( j s · D)ns ,

(D16)

where s = 〈n〉s is the renormalized spin density, H s
eff =

−δns
F (〈n〉ns ,〈n〉∂μns) is the effective field, αs = 〈n〉α is the

renormalized Gilbert damping, and j s = −� j is the spin
current with polarization along ns carried by magnons.

APPENDIX E: SCALING OF THE LATTICE VECTORS

In order to determine the ground state of the system at
a given point (A,H ) in the phase diagram, we compare the
energies of relaxed SP, SC, SkX, and FM configurations. We
use the LLG equation to simulate the spin dynamics and to

relax the system starting from ansatz states [SP, SC, and SkX
as given by Eq. (8), which are obtained by inspecting the results
from MC]. We then compare the resulting average free energy
densities and determine the actual phase.

In each case we relax a single primitive cell with rectangular
periodic boundary conditions. This, however, requires us to
specify the cell size, which we do not know beforehand.
To overcome this problem, we dynamically scale the spatial
coordinates as x ′ = axx and y ′ = ayy such that the lattice
vectors are scaled to their optimal values as we describe below.

The dimensions of the primitive cell (Lx,Ly) in the (x ′,y ′)
coordinate system are chosen such that the ansatz (SkX, SC,
SP) is compatible with periodic boundaries (that is, Lx = π ,
Ly = π/

√
3 for SkX, Ly = Lx = π/2 for SC and Lx = Ly =

π for SP). The average free energy density is given by f =
F/A, where

F = J

∫ Ly

−Ly

∫ Lx

−Lx

dx ′dy ′|J |F ′,

A =
∫ Ly

−Ly

∫ Lx

−Lx

dx ′dy ′|J |,

F ′ =
∑

μ=x,y

1

2
(aμ∂μ′ n)2 + (D̂eμ/D) · (n × aμ∂μ′ n)

+ HJ

D2
nz + AsJ

D2
n2

z,

|J | = 1

axay

. (E1)

Here |J | is the Jacobian of the transformation. The optimal
value of aμ is given by ∂aμ

f = 0 or

aμ = −1

2

∫ Ly

−Ly

∫ Lx

−Lx
dx ′dy ′|J |(D̂eμ/D) · (n × ∂μ′ n)∫ Ly

−Ly

∫ Lx

−Lx
dx ′dy ′|J | 1

2 (∂μ′ n)2
.

(E2)

Starting from an ansatz configuration n(0) given by Eq. (8),
one can determine the optimal value of a(0)

μ using Eq. (E2) and
relax the system using the overdamped LLG equation (7) for
a period of time TR . This process yields the configuration n(1)

which is closer to the local minimum, and we can calculate a(1)
μ

using n(1). Eventually, |f [n(i+1),ai+1
μ ] − f [n(i),ai

μ]| vanishes
as we approach the minimum.

A corollary of Eq. (E2) is that at the equilibrium point,

F
μ

D

2F
μ

J

=
∫ Ly

−Ly

∫ Lx

−Lx
dx ′dy ′|J |(D̂eμ/D) · (n × aμ∂μ′ n)

2
∫ Ly

−Ly

∫ Lx

−Lx
dx ′dy ′|J | 1

2 (aμ∂μ′ n)2
= −1,

(E3)

and since [η̂]μμ = 2F
μ

J and [η̂1]μμ = 2F
μ

J + F
μ

D , we reach the
conclusion that [η̂1]μμ = 0.

We emphasize that this result is derived under the as-
sumption of a periodic lattice and does not hold for isolated
skyrmions in general.
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[4] U. K. Rößler, A. N. Bogdanov, and C. Pfleiderer, Nature
(London) 442, 797 (2006).

[5] S. D. Yi, S. Onoda, N. Nagaosa, and J. H. Han, Phys. Rev. B 80,
054416 (2009).

[6] X. Z. Yu, Y. Onose, N. Kanazawa, J. H. Park, J. H. Han, Y.
Matsui, N. Nagaosa, and Y. Tokura, Nature (London) 465, 901
(2010).

[7] F. N. Rybakov, A. B. Borisov, and A. N. Bogdanov, Phys. Rev.
B 87, 094424 (2013).

[8] S. Heinze, K. von Bergmann, M. Menzel, J. Brede, A. Kubetzka,
R. Wiesendanger, G. Bihlmayer, and S. Blügel, Nat. Phys. 7, 713
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