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Robust quantum gates using smooth pulses and physics-informed neural networks

Utkan Güngördü * and J. P. Kestner
Department of Physics, University of Maryland Baltimore County, Baltimore, Maryland 21250, USA

(Received 20 November 2020; revised 19 September 2021; accepted 8 May 2022; published 27 May 2022)

The presence of decoherence in quantum computers necessitates the suppression of noise. Dynamically
corrected gates via specially designed control pulses offer a path forward, but hardware-specific experimental
constraints can cause complications. Existing methods to obtain smooth pulses are either restricted to two-level
systems, require an optimization over noise realizations, or limited to piecewise-continuous pulse sequences. In
this paper, we present the first general method for obtaining truly smooth pulses that minimizes sensitivity
to noise, eliminating the need for sampling over noise realizations and making assumptions regarding the
underlying statistics of the experimental noise. We parametrize the Hamiltonian using a neural network, which
allows the use of a large number of optimization parameters to adequately explore the functional control space.
We demonstrate the capability of our approach by finding smooth shapes, which suppress the effects of noise
within the logical subspace as well as leakage out of that subspace.
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I. INTRODUCTION

There has been significant progress in the past decades
towards the realization of a physical quantum computer. The
greatest obstacle presently hampering the current efforts, par-
ticularly for solid-state qubits such as Josephson junction
based qubits or semiconductor spin qubits, is the presence of
unwanted couplings between the qubit and its hosting envi-
ronment [1]. An established way of suppressing the effects
of such non-Markovian noise (as well as calibration errors in
the Hamiltonian) since the early days of NMR is dynamical
correction [2]—the application of carefully designed control
fields such that the effect of low-frequency noise can be ar-
ranged to cancel out when integrated over the entire evolution.
This approach is especially relevant for noisy intermediate-
scale quantum (NISQ) devices [3] whose limited number of
qubits precludes implementation of quantum error correction
codes, which can require as many as thousands of physical
qubits to protect just one logical qubit [4]. Dynamical cor-
rection instead addresses noise without any overhead in the
number of qubits at the cost of lengthening and complicating
the control pulses. For a robust quantum control protocol to
be practical, however, it is important to take the limitations
of the control hardware into account. Experimentally realistic
control fields must have bounded amplitude and bandwidth,
and hence be smooth pulses [5,6].
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For an ideal qubit with no noise, smooth pulses can be
obtained analytically [5] or numerically [6]. For dynamical
correction, smooth pulses that are robust against errors within
a qubit’s logical subspace have also been proposed to address
quasistatic noise in two-level systems [7–9] by reducing sen-
sitivity to noise in a perturbative analysis. Extending these
(semi)analytic approaches beyond two-level systems remains
a challenge. This is an important problem because although
two-level systems are useful for basic demonstrations, a quan-
tum computer requires at least pairwise interaction of qubits,
entailing dynamics in a larger Hilbert space. Furthermore,
even for single qubit control, systems such as the transmon
[10] and resonator-coupled spin qubits [11] contain not only
pairs of low lying energy levels used to encode a qubit, but
also slightly higher lying “leakage” states, requiring naviga-
tion of a larger Hilbert space that is outside the scope of these
robust smooth pulses.

Other existing approaches numerically search for pulses
that maximize gate fidelity for an ensemble of simulated
noise sampled from an assumed distribution function, and are
not restricted to two-level systems. The control is typically
(although not necessarily [12]) split into piecewise-constant
segments [13–19]. In the piecewise-continuous approach,
when the number of segments is not sufficiently large, a
secondary optimization may be required to account for the
filtering effects of the bandwidth-limited waveform gener-
ator on the sudden jumps in the pulse [6]. Although one
may strive to approach a smooth pulse by increasing the
number of segments and penalizing sudden jumps at the
cost of computational complexity, in our study we instead
use continuous functions, which enable the efficient use of
adaptive-time ordinary differential equation (ODE) solvers.
For broadband noise, a smooth pulse approach to improve
gate fidelity by suppressing the leading order effects of an
assumed noise power spectral density (PSD) was reported in
Ref. [20]. A common theme in all these approaches is that the
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optimization of fidelity is performed over the combined effect
of the noise and control, which requires assumptions regard-
ing the spectrum or the statistics of the noise and averaging
over noise realizations.

Here, we propose an approach that addresses all these
issues simultaneously and allows us to find smooth pulses
for implementing robust quantum gates in any qubit platform.
The generic approach described here is not limited to two-
level systems and can suppress the effects of both leakage
and quasistatic noise, regardless of the underlying statistics
of the noise, by minimizing the sensitivity to arbitrary qua-
sistatic noise (as opposed to maximizing fidelity for a given
noise sampling) through the exact functional relation between
noise and its effect on the resulting quantum gate. This is
enabled by recently introduced physics-informed neural net-
work (PINN) frameworks [21], which implement deep neural
networks (DNNs) that can be used to minimize a cost function
while at the same time respecting a given set of differential
equations (see also Refs. [22–24]). Furthermore, as we will
show, the resulting robust pulses are practical and constitute a
new state-of-the-art in quantum control.

From a computational point of view, sampling-based ap-
proaches, which focus on maximizing the gate fidelity for
a given stochastic perturbation require additional optimiza-
tion cycles with different noise realizations whose values are
sampled from a given distribution function, which comes at
a significant computational cost. By focusing on the noise
sensitivity, our approach eliminates the necessity for aver-
aging over noise traces. Furthermore, operating over smooth
functions rather than a large number of piecewise-continuous
pulses with fixed-width segments allows additional speed up
when using adaptive ODE solvers [6]. Another advantage of
our functional approach is that one can impose exact bound-
ary conditions and functional constraints (such as explicit
bandwidth constraints, maximum drive amplitude, boundary
conditions for the drive, or even functional constraints such
as DRAG [10] and filtering effects [25]) from the outset.
This is in contrast with the usual approach of penalizing any
deviation of such constraints by including them in the cost
function, which makes it more difficult to find solutions by
making the optimization landscape more complicated, leading
to additional false minima and stiffness. Furthermore, as we
demonstrate below, it is also feasible to suppress higher order
effects of noise within our approach, which are important for
strong errors and long pulse durations.

The parametrization of the smooth control Hamiltonian
using a DNN, instead of the commonly used Fourier har-
monics amplitudes [6,12,20], is a distinguishing feature of
our approach, which enables the use of a very large number
of optimization parameters to exhaustively probe the func-
tional space of smooth control fields. This is impractical
with a Fourier series, since increasing the number of har-
monics necessarily introduces faster oscillations, which slow
down adaptive ODE solvers, and no method to compute the
parameter gradients with improved efficiency (such as the
backpropagation algorithm for DNNs) exists.

Finally, in terms of methodology, within the wider context
of DNN based quantum control [26–29], our approach is a
new direction beyond sampling based learning protocols for
finding robust and nonrobust shaped pulses.

II. METHOD

We start from a generic definition of a quantum system
described by a control and error Hamiltonian as H (t, p) =
Hc(t, p) + Hε (t, p) with

Hc(t, p) =
∑

i

hi(t, p)�i, Hε (t, p) =
∑

i

εiχi(t, p)�i,

(1)

where p = p(t ) is a time-dependent control parameter char-
acterizing the driving fields hi, εi are the quasistatic stochastic
noise strengths, �i are traceless generators of the Lie algebra
su(n) that obey tr(�i� j ) = nδi j , and χi(t, p) represent any
dependence of the noise Hamiltonian Hε on the control fields.
The latter becomes relevant when a term in the Hamiltonian
is a nontrivial function of a noisy parameter, e.g., single-qubit
microwave driving �(t ) with multiplicative amplitude error
δ� = ε�(t ) or tunable qubit-qubit coupling J (V ) susceptible
to fluctuations δV in the voltage or flux tuning parameter as
δJ = δV ∂V J (V ).

By treating Hε as the interaction Hamiltonian, the solution
of the time-dependent Schrödinger equation can be expressed
as U (t ) = U †

ε (t )Uc(t ) where ih̄U̇c(t ) = Hc(t, p)Uc(t )
is the ideal time-evolution operator and ih̄U̇ε (t ) =
[U †

c (t )Hε (t, p)Uc(t )]Uε (t ) accounts for the effects of the
noise. For weak noise (

∫ T
0 dt ||U †

c (t )Hε (t, p)Uc(t )/h̄|| � π ),
Uε can be calculated perturbatively using Magnus
expansion as

Uε (T ) = exp

(
− i

h̄

∫ T

0
dtU †

c (t )Hε (t, p)Uc(t )

)
+ O

(
ε2

i

)

= exp

(
− i

h̄

∑
i

εiEi(T )

)
+ O

(
ε2

i

)
, (2)

where Ei(T ) = ∫ T
0 dtU †

c (t )[χi(t, p)�i]Uc(t ). A robust
quantum gate is one that is insensitive to the first-order
effects of εi, i.e., ∂εiU (T )|εi=0 = 0. This condition can be
achieved by choosing a control field for which ||Ei(T )|| is
negligibly small. The control field must also be chosen such
that within the logical subspace Uc(T ) has the same result as a
given target operation, U0. These requirements are equivalent
to stating that the following cost function needs to vanish:

C =
(

1 −
∣∣tr([PUc(T )P†]U †

0

)∣∣k

Dk

)

+
∑

i

(
wiε

max
i

h̄D
NP (Ei(T ))

)l

,

(3)

where D � n is the dimension of the logical subspace
used for quantum computation, NP (Ei(T )) = ||PE (T ) −
tr[PE (T )]/D|| is the noise sensitivity of the logical subspace,
P denotes the projection operator onto the logical subspace,
||A||2 = tr(AA†), εmax

i is the maximum tolerable value of the
stochastic noise strength εi, wi � 1 are hyperparameters for
the optimization step, which can be tuned or annealed with a
schedule to avoid local minima. The first term in parentheses
is similar to the gate infidelity in the absence of stochastic
noise, which ensures that the final unitary is U0, and the
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FIG. 1. Optimization flowchart of the physics-informed neural
network for finding robust smooth pulses. Backpropagation effi-
ciently works in conjunction with the adjoint sensitivity analysis of
the coupled ODE system, and all derivatives with respective to opti-
mization parameters θ j (weights, biases, and time-scaling parameter)
are computed using automatic differentiation [30].

second term is the sensitivity, which ensures that the im-
plemented gate is immune to the first-order effects of the
stochastic noise εi; this is different from the existing ap-
proaches where the cost function is taken to be the noisy
gate infidelity, which also necessitates an averaging over a
particular noise distribution [12–14,16–19]. The exponents
k and l determine the relative weighting of the fidelity and
the sensitivity terms in the cost function. In fact, the two
terms could be wrapped inside any monotonically increasing
functions, but in our results for simplicity we will simply raise
to a power of either 1 or 2.

A neural network is a network of “neurons” (see Fig. 1),
where a vertical column of neurons form a layer. The overall
action of the ith layer of the neural network is to map a di

dimensional input vector x onto a di+1 dimensional output
vector Li(x) = σi(Wix + bi ), where Wi is a matrix and bi

a vector respectively containing the “weights” and “biases”
of the ith layer, and σi is known as the “activation func-
tion.” Our DNN represents a function t → p(t ), where p(t )
is a smooth curve parameterized by the internal degrees of
freedom of the DNN, bi, and Wi, as p(t ) = LN ◦ . . . ◦ L1(t ).
Intermediate layers 1 < i < N are commonly referred to as
hidden layers. For concreteness, we will take σi to be the
element-wise-acting tanh function, although functions, which
are sufficiently smooth and do not significantly affect the
bandwidth requirements of the resulting pulse shape are also
viable.

The goal of a DNN optimizer is to vary the weights and
biases until the cost function C is minimized. This is achieved
by using local gradient based optimization in conjunction with
the backpropagation algorithm [31]. This requires calculation
of C in addition to its parameter gradient ∂C, i.e., the partial
derivatives of C with respect to each of the elements of Wi

and bi at each iteration, which can be computationally pro-
hibitive. For this reason, we differentiate Ei(t ) analytically and
transform the problem of calculating C into solving a coupled
system of ODEs

∂t

(
Uc(t )
Ei(t )

)
=

( −iHc(t, p)Uc(t )/h̄
U †

c (t )[χi(t, p)�i]Uc(t )

)
(4)

subject to the initial conditions Uc(0) = 1, Ei(0) = 0. Simi-
larly, ∂C is calculated by taking partial derivatives of Eq. (4)
with respect to the elements of Wi and bi as in Ref. [6]. This

form allows a more efficient calculation of the cost function
and its parameter gradient, as required by the backpropagation
algorithm, by using the adjoint sensitivity method [32,33]
on Eq. (4). In practice, we perform the straightforward but
unwieldy task of calculating the parameter gradients of the
coupled ODE system Eq. (4) by using automatic differentia-
tion [26,28,30].

The above analysis can be extended to higher-order er-
ror correction, which is relevant when the noise is not
sufficiently weak for a first order treatment. For exam-
ple, second-order error correction can be achieved by ap-
pending ∂tE (2)

i j (t ) = [∂tEi(t )E j (t ) − E j (t )∂tEi(t )]/2 to Eq. (4)

with the initial condition E (2)
i j (0) = 0, and introducing∑

i, j (wi jε
max
i εmax

j NP (E (2)
i j (T ))/Dh̄2)

l
to the cost function,

which ensures that the second order term in the Magnus
expansion for Uε (T ) vanishes, and comes at only minor ad-
ditional computational cost [34].

We remark that we are performing a search in the space
of functions. In general, a large number of parameters are re-
quired to adequately explore a functional space. Parametrizing
a functional space in a way that leads to convergent and exper-
imentally feasible solutions is a nontrivial problem [7–9,35].
For example, a set of a few sinusoidal harmonics [6,12,36]
explores a very limited portion of the functional space; this
can be remedied by increasing the number of harmonics but
results in unrealistic bandwidth requirements and significantly
slows down the optimization problem due to inefficient com-
putation of gradients and reduced timesteps in adaptive ODE
solvers.

In contrast, our parametrization of the time-dependence
of the Hamiltonian eliminates the problem of finding a well-
behaved hand-crafted ansatz form to optimize over, and makes
it straightforward to explore a larger functional space by sim-
ply increasing the number of neurons and layers, owing to
the fact that DNNs are universal function approximators [37],
and produces well-behaved Hamiltonians while remaining
computationally efficient. We emphasize that our parametriza-
tion with DNNs, t → p(t ) → Hc(t, p), differs from earlier
works: instead of using the output of the DNN to rep-
resent discrete ansatz parameters (such as the amplitudes
of harmonics [12] or segments of piecewise control fields
[13–19]), we directly use p(t ) as a smooth differentiable
function of time to construct Hc(t ), which is made possible
by the recently introduced PINNs [21]. Our approach has the
added benefit that functional constraints can be specified as a
part of the parametrization p(t ) → Hc(t, p) [e.g., Hc(t, p) =
A sin (p1(t ))σx + Bσz constrains the drive amplitude to be less
than |A|], which limits the search to the space of functions
that satisfy the constraints from the outset. This is in contrast
to enforcing constraints via cost function by penalizing any
deviations, which complicates the optimization landscape and
can introduce false minima, leading to inefficiency.

Since both the adjoint sensitivity method and backpropa-
gation algorithm (which uses the directed graph structure of
DNNs to compute the gradients more efficiently) are well es-
tablished computational methods, we here focus on presenting
our results on robust quantum control, and refer the reader
to the literature [31–33] for their details. For our numerical
results, we use DiffEqFlux.jl [33], which is a Julia package
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FIG. 2. Decay of the cost function C as a function of iterations
during the optimization process for the pulse shown in Fig. 6.

implementing a PINN optimizer, with optional support for
hardware DNN accelerators. Before moving on to explicit
solutions, we remark that the gate time T needs to be de-
cided prior to optimization. For Hamiltonians that can contain
nonadjustable terms (such as drift terms), a solution will gen-
erally not exist for an arbitrary T , and finding a suitable value
can be laborious. This problem can be solved by introducing
a new optimization parameter α, a time-independent scaling
factor, to the right-hand side of Eq. (4) and to the noise terms
εi in Eq. (3); α can be seen as a scaling factor for time or the
total Hamiltonian. To avoid long gate times approaching to
inverse of the incoherent decay rates �i, one can also introduce
a factor e− ∑

i �iT/α to the trace fidelity term in the cost function
C. To train the neural networks, we use local gradient based
optimization algorithms. We start from a random initial inter-
nal state for the neural network, and use a variant of stochastic
gradient descent algorithm with limited iterations, followed
by Broyden-Fletcher-Goldfarb-Shanno (BFGS) passes. A rep-
resentative plot for the decay of the cost function is shown
in Fig. 2, which was obtained during the training process for
the pulse shown in Fig. 6. During the first 200 iterations,
AMSGrad [38] was used with the learning rate η = 10−3. The
result was further refined using a BFGS pass of 350 iterations
with an initial step norm of 10−3. The fully connected DNN
layer structure with two hidden layers of length 32 provides
∼103 optimization parameters, which we found to be suffi-
cient for all the problems we have studied in this paper.

III. EXAMPLES

A. Exchange-coupled spin qubits

As our first proof-of-concept example, we consider a pair
of spin qubits in a semiconductor double quantum dot, with
one electron in each dot. The overlap between the electron
wavefunctions is determined by the gate voltages, which pro-
vides voltage tunable exchange coupling between the spin
degrees of freedom of the electrons. Single-qubit operations
are realized by modulation of the magnetic field that is gen-
erated by an on-chip wire. In a rotating frame, the spin
Hamiltonian of this system can be written as [35]

Hc(t ) = J

4
σz ⊗ σz + 1

2
gμBBx(t )σx ⊗ 1, (5)

whose Lie algebra is isomorphic to a two-level su(2)
generated by {σz ⊗ σz, σx ⊗ 1, σy ⊗ σz}. The exchange

FIG. 3. (Top) Pulse shape implementing a CZ gate that is robust
against the first and second order effects of quasistatic errors in ex-
change coupling, obtained with κT = 30, k = 2, l = 2, T = 4.8h/J
using a neural network with two hidden layers of length 32, in ≈1400
optimization steps. The detailed numerical parameters of this pulse
are tabulated in Appendix. (Bottom) Gate infidelity as a function
of the error strength εJ for the robust pulse shape (corrected) and
a simple, undriven implementation (naive).

coupling, J , which in some devices is essentially fixed due to
bandwidth limitations [35,39], is susceptible to charge noise
induced fluctuations, which can be modelled by the noise
Hamiltonian Hε = εJJσz ⊗ σz/4. An entangling CZ-
equivalent gate (e−iσz⊗σzπ/4) can be produced naively
by setting Bx = 0 and waiting a time h̄π/J . However,
instead we search for a smooth pulse Bx(t ), which
can correct both first and second order quasistatic
fluctuations in J by parametrizing the magnetic field as
gμBBx(t )/2 = (J/4)A(t )p1(t ) sin (p2(t )). Here, A(t ) =
coth(κT )[tanh(κt ) − tanh (κ (t − T ))] − 1 is a smoothed unit
square pulse (κ determines the degree of the smoothing), and
its purpose is to enforce the condition that the magnetic
field is turned on only for the duration of the pulse,
Bx(0) = Bx(T ) = 0. The resulting smooth pulse shown
in Fig. 3 produces a CZ gate with extraordinarily high gate
fidelities [defined as F = |tr(U (T )U †

0 )/4|2] above 99.99%
for exchange errors as large as 24%, and is faster than the
smooth pulse reported in Ref. [5]. A bandwidth limitation of
� f ≈ 20/T leads an infidelity ≈10−5, which corresponds to
a very conservative value of ≈4 MHz for J/h = 1 MHz [40].

For completeness, we now turn to full SU(4) control in
such systems. A robust universal set of gates in exchange-
coupled spin qubits can be achieved with the addition of
error-free virtual Z rotations [41] and the robust one-qubit
rotation Xπ/2 [35] implemented by the pulse shown in Fig. 4.
Either qubits can be targeted by changing the modulation
frequency of the driving field to that of the target qubit [35].
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FIG. 4. (Top) Pulse shape implementing a Xπ/2 gate that is ro-
bust against the first-order effects of quasistatic errors in exchange
coupling, obtained with κT = 20, k = 2, l = 2, T = 3.2h/J using
a neural network with two hidden layers of length 32. The detailed
numerical parameters of this pulse are given in the text. (Bottom)
Gate infidelity as a function of the error strength εJ . No infidelity
curve for a naive implementation is shown, because one-qubit gates
with always-on J coupling are a nontrivial problem even without any
robustness requirements [39].

We can also use this method to find robust pulses for arbi-
trary elements of SU(2) ⊂ SU(4) generated by {σz ⊗ σz, σx ⊗
1, σy ⊗ σz} or {σz ⊗ σz, 1 ⊗ σx, σz ⊗ σy}, in a direct manner
provided that the gate time is sufficiently long (for example, an
entangling operation requires at least T � h̄π/4J). Arbitrary
SU(4) rotations can also be implemented using a two-tone
drive, given by

Hc(t ) = J

4
σz ⊗ σz + 1

2
g1μB

[
B(1)

x (t )σx ⊗ 1 + B(1)
y (t )σy ⊗ 1

]
+ 1

2
g2μB

[
B(2)

x (t )1 ⊗ σx + B(2)
y (t )1 ⊗ σy

]
. (6)

The generators of this Hamiltonian fully span su(4), and
hence can generate any SU(4) gate directly. As a repre-
sentative example, the pulse shown in Fig. 5 generates
exp(−i π

8 [σy ⊗ σy + σz ⊗ σz]), which is equivalent to an√
iSWAP gate up to local unitaries. We note that this rotation

cannot be generated directly using the Hamiltonian in Eq. (5).

B. Transmon qubit

To illustrate simultaneous noise and leakage suppression,
we next turn to the transmon qubit, although we remark in
passing that this scenario is also relevant in the context of
resonator-coupled spin qubits [11] and encoded exchange-
only spin qubits [42]. The effective Hamiltonian for the
transmon can be written as [43]

Hc(t ) ≈ δ(t )a†a + �

2
a†a(a†a − 1) + �(t )a + �∗(t )a†

2
(7)

FIG. 5. (Top) Pulse shape implementing the gate exp(−i π

8 [σy ⊗
σy + σz ⊗ σz]) that is robust against the first order effects of qua-
sistatic errors in exchange coupling, obtained with κT = 20, k = 2,
l = 2, T = 3.2h/J using a neural network with two hidden layers of
length 32. The detailed numerical parameters of this pulse are given
in the text. (Bottom) Gate infidelity as a function of the error strength
εJ . No infidelity curve for a naive implementation is shown, because
implementation of an

√
iSWAP gate with always-on J coupling is

a nontrivial problem even without any robustness requirements as it
requires one-qubit rotations with always-on J .

in a rotating frame, where � is the anharmonicity and �(t )
is the complex envelope of the microwave drive capacitively
coupled to the transmon via a resonator, whose frequency is
detuned from the qubit frequency by δ(t ). The first two levels
encode a logical qubit, and we consider the first four levels in
our calculations [44]. Thus, when calculating C, we project
U (T ) onto the qubit subspace. The single-sided projection
PEi(T ) in NP (Ei(T )) allows us to leave out the effects of
the noise solely on leakage subspace [45]; that being said, it
is possible to protect the leakage subspace as well by simply
omitting this projection. Our goal is to find a smooth pulse
for implementing a gate that can suppress both leakage and
shifts in detuning δ(t ) → δ(t ) + ε, which can be caused by
calibration errors [46], stochastic phase errors [47].

At this point, we recall that an established method of
suppressing leakage in Josephson junction based qubits is to
use pulse shapes that obey a particular family of differential
relations between �(t ), �, and δ(t ), known as DRAG [10].
These relations ensure that the leakage inducing terms remain
small throughout the pulse. It is possible to enforce DRAG
conditions by construction, for instance by augmenting Eq. (4)
with the relation �̇P(t ) = p1(t ) sin (p2(t )) and parametrizing
the drive as �(t ) = A(t )�P(t ) − i∂t [A(t )�P(t )]/2�, δ(t ) =
0. However, we will proceed without doing so in order to
avoid limiting the search space: DRAG is a sufficient condi-
tion for suppressing leakage, but it is not a necessary one since
what matters is whether the qubit subspace time-evolution
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FIG. 6. (Top) Pulse shape implementing a Xπ/2 gate that is robust
against the first-order effects of quasistatic errors in detuning and
leakage errors, obtained with κT = 50/4, k = 1, l = 2, T = 2h/|�|
using a neural network with two hidden layers of length 32, in
≈600 optimization iterations. The detailed numerical parameters of
this pulse are tabulated in Appendix. (Bottom) Gate infidelity as a
function of the error strength ε/|�|.

operator is equal to the target unitary at the final time t =
T , regardless of any leakage that may be present during
intermediate times 0 < t < T . We thus parametrize the driv-
ing field as

�(t ) = �x(t ) + i�y(t )

= 4�A(t )(2/π )[arctan (p1(t )) sin (p2(t ))

+ i arctan (p3(t )) sin (p4(t ))],

δ(t ) = 2�A(t )(2/π ) arctan (p5(t )) sin (p6(t )), (8)

where the use of arctan clamps the field amplitudes, and we
target a Xπ/2 gate [48]. This is in particular a useful example,
because when used together with error-free virtual Z rotations
implemented by shifting the rotating frame [41], Xπ/2 gates
are sufficient to implement arbitrary single qubit rotations.
The resulting pulse shape is shown in Fig. 6. For a typical
anharmonicity value of �/h ∼ −200 MHz [43], the pulse
duration is T ∼ 10 ns. Under this assumption, the resulting
gate fidelities, defined by F = |tr([PU (T )P†]U †

0 )/2|2, re-
main above 99.99% as long as the shift in detuning remains
below 3.5% of �. When the effect of two additional higher
leakage states are taken into account for this pulse shape,
the baseline fidelity remains the same. Compared to a non-
robust pulse based on DRAG [10,43,46], which can take at
least T ≈ 2.1h/|�| = 10.5 ns and reaches the same infidelity
threshold at 0.03% of �, this new shaped pulse improves
the error threshold against detuning errors by two orders of
magnitude. A bandwidth limitation � f ≈ 4.73/T leads to

TABLE I. Chebyshev series expansion coefficients cn for
gμBBx (τ )/J with τ0 = 4.8 for the pulse shown in Fig. 3.

n gμBBx (τ )/J

0 –0.222
1 0.714
2 0.0125
3 –0.178
4 –0.3635
5 0.178
6 0.1255
7 –0.3785
8 0.3445
9 –0.556
10 0.433
11 –0.012
12 –0.0975
13 –0.047
14 –0.164
15 0.406
16 –0.145
17 –0.107
18 –0.0315
19 0.076
20 0.1425
21 –0.1545
22 –0.034
23 0.044
24 0.0415
25 0.008
26 –0.065
27 0.017
28 0.016

10−5 infidelity, which corresponds to ≈473 MHz for � =
−200 MHz, approximately twice the bandwidth required by
DRAG ≈255 MHz.

Although dephasing effects associated with quasistatic
fluctuations are corrected by a robust pulse, relaxation pro-
cesses can limit the fidelity of gate operations in transmon.
These effects can be quantified using the master equation

ρ̇(t ) = − i

h̄
[H (t ), ρ(t )] + 1

T1
D[a]ρ(t ) + 1

Tφ

D[a†a]ρ(t ) (9)

where D[A]ρ(t ) ≡ Aρ(t )A† − {A†A, ρ(t )}/2 and 1/Tφ =
1/T2 − 1/2T1 is the pure dephasing rate. We compute the
state-averaged gate fidelity [49]

〈F〉 = 1

2
+ 1

(2 + 1)22

3∑
i=1

tr[Q(σi )U (T )σiU (T )†], (10)

where Q represents the quantum channel associated with the
master equation as ρ0 → Q(ρ0). For this robust pulse, we
find that the effects of relaxation on the fidelity is less than
10−4 when T1|�|/h � 3554, and Tφ � 10T1 (we remark, how-
ever, that this represents a higher bar than necessary, given
that our pulse shape already protects against pure quasistatic
dephasing errors). These limits are well accessible in recent
experiments; for example, in Ref. [50], the value of T1|�|/h is
13 200 with |�|/h = 220 MHz, T1 = 60 μs and Tφ � 727 μs
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(lower limit, obtained from T Hahn
2 = 103 μs, which is smaller

than T2) which is greater than 10T1.
We remark that when drive amplitude limitations or the

robustness constraints are removed, our method easily pro-
duces faster nonrobust gates that well outperform the fastest
DRAG pulses, ultimately limited by the bandwidth of the
drive. More stringent experimental bandwidth constraints can
be accommodated by running the search with an appropriately
increased gate time T ; although it is harder to find solu-
tions for shorter gate times, one can always find solutions at
longer times.

IV. CONCLUSIONS

In summary, we have introduced a method for performing
dynamically corrected quantum gates with practical smooth
pulses that is broadly applicable to large Hilbert spaces be-

TABLE II. Chebyshev series expansion coefficients cn for
gμBBx (τ )/J with τ0 = 3.2 for the pulse shown in Fig. 4.

n gμBBx (τ )/J

0 –0.221
1 –0.339
2 –0.617
3 –0.422
4 0.576
5 0.571
6 0.039
7 0.248
8 0.347
9 –0.131
10 –0.119
11 0.189
12 –0.019
13 –0.167
14 0.066
15 0.072
16 –0.1
17 –0.015
18 0.076
19 –0.027
20 –0.042
21 0.04
22 0.013
23 –0.033
24 0.007
25 0.021
26 –0.014
27 –0.008
28 0.013
29 –0.001
30 –0.009
31 0.004
32 0.004
33 –0.005
34 –0.001
35 0.004
36 –0.001
37 –0.002
38 0.002

yond two-level systems, which is necessary for robust control
of multiqubit devices and leakage into excited states, and
is practically extensible to correction of errors beyond first
order. Our approach is the first generally applicable robust
noise-sensitivity based smooth pulse shaping method, does
not require sampling or assumption with regards to the na-
ture of the noise, and leverages physics-informed deep neural
networks for computational advantages. In addition to noise
cancellation, our generic approach can also be used to reduce
or eliminate the need for careful recalibration cycles during
experiments. A future direction is the extension of this ap-
proach to suppress time-dependent broadband noise.
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APPENDIX: PARAMETERS FOR SHAPED PULSES IN THE
MAIN TEXT

The dimensionless pulse shapes shown in the main text
can be approximated using a truncated Chebyshev series
in the form

N−1∑
n=0

cnTn(2τ/τ0 − 1), (A1)

TABLE III. Chebyshev series expansion coefficients cn for
giμBBj (τ )/J with τ0 = 3.2 for the pulse shown in Fig. 5.

n g1μBB(1)
x (τ )

J

g1μBB(1)
y (τ )

J
g2μBB(2)

x (τ )
J

g2μBB(2)
y (τ )

J

0 0.001 0 –0.156 0.005
1 –0.312 0 –0.151 –0.004
2 0.066 0 –0.594 –0.012
3 0.036 –0.001 –0.241 –0.005
4 –0.035 0.001 0.406 0.001
5 0.056 0 0.121 0.007
6 –0.124 0 0.416 0.007
7 0.262 0 0.445 0.006
8 0.132 0 –0.113 –0.003
9 –0.016 0 –0.282 –0.003
10 –0.045 0 0.09 0.003
11 –0.038 –0.001 0.191 0.001
12 –0.001 0 –0.045 –0.001
13 0.027 0.001 –0.119 0
14 0.015 0 –0.008 –0.001
15 –0.018 –0.001 0.056 0
16 –0.016 0 0.014 0.001
17 –0.002 0 –0.028 0
18 0.012 0 –0.017 –0.001
19 0.008 0 0.008 0
20 –0.008 0 0.011 0
21 –0.009 0 0 0
22 0.003 0 0 0
23 0.008 0 0 0
24 0 0 0 0
25 –0.005 0 0 0
26 –0.002 0 0 0
27 0.003 0 0 0
28 0.002 0 0 0

023155-7



UTKAN GÜNGÖRDÜ AND J. P. KESTNER PHYSICAL REVIEW RESEARCH 4, 023155 (2022)

TABLE IV. Chebyshev series expansion coefficients cn for
�x (τ )/�, �y(τ )/�, and δ(τ )/� with τ0 = 2 for the pulse shown
in Fig. 6.

n �x (τ )/� �y(τ )/� δ(τ )/�

0 0.004 –0.0153 0.3267
1 –0.0216 –0.0728 –0.0696
2 –0.181 0.0997 –0.2557
3 0.1319 0.2563 0.0677
4 0.2608 –0.1326 –0.0823
5 –0.1138 –0.2096 0.0041
6 –0.1005 0.0578 0.0087
7 –0.0053 0.0243 –0.0022
8 0.018 –0.0104 0.0028
9 0.0112 0.002 0
10 –0.0011 0 0
11 –0.0027 0 0

where Tn(x) is nth the Chebyshev polynomial of the first
kind, τ (τ0) is the dimensionless (total) time shown along
the x axis. The Chebyshev coefficients cn for gμBBx(τ )/J
shown in Fig. 3 are tabulated in Table I. Similarly, the
Chebyshev series coefficients for gμBBx(τ )/J shown in
Fig. 4 are tabulated in Table II, and for g1μBB(1)

x (τ )/J ,
g1μBB(1)

y (τ )/J , g2μBB(2)
x (τ )/J and g2μBB(2)

y (τ )/J in Fig. 5
are tabulated in Table III. Finally, for �x(τ )/� �y(τ )/�,
and δ(τ )/� in Table IV. Approximate pulse shapes recon-
structed from these Chebyshev coefficients result in similar
fidelity curves, which reach the 10−4 threshold around the
same value, closely approximating the fidelity curves given
in the main text. The code used to produce the robust pulses
shown in Fig. 3 and Fig. 6, and the resulting internal state
of the neural networks can be found in the Supplemental
Material [51].
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